3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Personal Device EMF Research

RFELF Magnetic

Research on EMF from devices you carry or wear daily - phones, earbuds, smartwatches, and laptops.

3
Sources
3,372
Studies
2
EMF Types

Related Studies (1,772)

Whole brain EEG synchronization likelihood modulated by long term evolution electromagnetic fields exposure.

Lv B, Su C, Yang L, Xie Y, Wu T · 2014

Researchers exposed 10 people to 4G LTE cell phone signals for 30 minutes while monitoring their brain activity with EEG sensors. They found that the radiofrequency exposure changed how different parts of the brain synchronized their electrical activity patterns. This suggests that wireless signals from modern smartphones can alter brain function even during short-term exposure.

Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students?

Movvahedi MM et al. · 2014

Researchers exposed 60 elementary school children (ages 8-10) to cell phone radiation for 10 minutes and tested their reaction times and memory performance. Surprisingly, the children performed better on short-term memory tests after radiation exposure compared to sham exposure. This unexpected finding challenges assumptions about how radiofrequency radiation affects developing brains.

Severe Cognitive Dysfunction and Occupational Extremely Low Frequency Magnetic Field Exposure among Elderly Mexican Americans

Davanipour Z, Tseng C-C, Lee PJ, Markides KS, Sobel E. · 2014

Researchers studied 3,050 elderly Mexican Americans to examine whether jobs with high magnetic field exposure affected severe cognitive problems. Workers in high-exposure occupations like power plants were 3.4 times more likely to develop severe cognitive dysfunction, particularly among older adults and smokers.

The effect of radiofrequency radiation generated by a Global System for Mobile Communications source on cochlear development in a rat model

Seckin E et al. · 2014

Researchers exposed pregnant rats and their newborn pups to cell phone radiation (900 and 1800 MHz) for one hour daily during critical developmental periods. While hearing tests showed no differences, microscopic examination revealed significant cellular damage in the inner ear, including increased cell death and abnormal cell structures. This suggests that developing hearing organs may be particularly vulnerable to radiofrequency radiation during crucial growth periods.

Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats.

Tök L, Nazıroğlu M, Doğan S, Kahya MC, Tök O. · 2014

Researchers exposed rats to Wi-Fi radiation (2.45 GHz) for one hour daily over 30 days to study effects on eye lens health. They found that Wi-Fi exposure caused oxidative stress in the lens tissue, indicated by increased harmful byproducts and decreased protective antioxidant activity. However, when rats were given melatonin supplements, these negative effects were significantly reduced, suggesting melatonin may help protect eye tissue from Wi-Fi-related damage.

Severe Cognitive Dysfunction and Occupational Extremely Low Frequency Magnetic Field Exposure among Elderly Mexican Americans.

Davanipour Z, Tseng C-C, Lee PJ, Markides KS, Sobel E. · 2014

Researchers studied over 3,000 elderly Mexican Americans to see if working in jobs with high magnetic field exposure (like electricians or welders) was linked to severe cognitive problems. They found that people who worked in high magnetic field occupations were 3.4 times more likely to develop severe cognitive dysfunction, with the risk being even higher for older adults and smokers. This is the first study to specifically examine the connection between workplace magnetic field exposure and severe cognitive decline in older adults.

Mobile telephones: A comparison of radiated power between 3G VoIP calls and 3G VoCS calls.

Jovanovic D, Bragard G, Picard D, Chauvin S. · 2014

Researchers measured the radiation power from smartphones during voice calls, comparing traditional phone calls to internet-based calls (VoIP) like those made through apps. They found that VoIP calls emit about 3.4 times more radiation than traditional calls (0.75% versus 0.22% of maximum power), though both levels remained well below safety limits. This matters because millions of people now use VoIP apps for calling, potentially increasing their radiation exposure without realizing it.

Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields.

Lu Y et al. · 2014

Researchers exposed brain immune cells (microglia and astrocytes) to 1800 MHz radiofrequency radiation - the same frequency used by many cell phones. They found that RF exposure triggered inflammatory responses in both cell types, but through different biological pathways. The study identified a specific protein (STAT3) that could be targeted to potentially protect against RF-induced brain inflammation.

Protective role of seame oil against mobile phone base station-induced oxidative stress

Marzook EA, Abd El Moneim AE, Elhadary AA · 2014

Egyptian researchers exposed rats to 900 MHz radiation from a mobile phone base station for 8 weeks and found it caused oxidative stress (cellular damage from unstable molecules) and disrupted cholesterol levels and antioxidant enzymes. When rats were also given sesame oil during exposure, many of these harmful effects were reduced, suggesting the oil's antioxidants provided some protection against the radiation damage.

Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats

Tök L, Nazıroğlu M, Doğan S, Kahya MC, Tök O. · 2014

Turkish researchers exposed rats to Wi-Fi radiation (2.45 GHz) for one hour daily over 30 days and found it caused oxidative stress in the eye lens, similar to cellular damage from aging or toxins. When rats were given melatonin supplements, the antioxidant significantly reduced this Wi-Fi-induced damage. This suggests that common Wi-Fi exposure may harm delicate eye tissues, but natural protective compounds could help defend against such effects.

Brain & Nervous SystemNo Effects Found

Electromagnetic fields and EEG spiking rate in patients with focal epilepsy

Curcio G, Mazzucchi E, Marca GD, Vollono C, Rossini PM · 2014

Italian researchers exposed 12 epilepsy patients to cell phone radiation (902.4 MHz GSM signal) for 45 minutes to see if it affected their brain's electrical activity and seizure patterns. They found that the radiation actually reduced seizure-related brain spikes slightly and caused some changes in brain wave patterns, but concluded these effects had no clinical significance for the patients' epilepsy management.

Oxidative StressNo Effects Found

Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells.

Kang KA et al. · 2014

Researchers exposed neuronal brain cells to combined cell phone radiation (CDMA and WCDMA signals) for 2 hours to measure whether this caused oxidative stress, a type of cellular damage linked to various health problems. The study found no increase in reactive oxygen species (cellular damage markers) in any of the three types of brain cells tested, even when combined with known oxidative stress agents.

Brain & Nervous SystemNo Effects Found

Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats.

Klose M et al. · 2014

German researchers exposed young rats to cell phone radiation (900 MHz) for nearly their entire lives, testing their learning and memory abilities at different ages. Despite using radiation levels up to 10 W/kg (much higher than typical phone exposure), they found no significant effects on behavior, memory, or brain development. This long-term study suggests that chronic cell phone radiation exposure starting in early development may not impair cognitive function.

Brain & Nervous SystemNo Effects Found

Assessment of the neurotoxic potential of exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells

de Groot MW, Kock MD, Westerink RH. · 2014

Dutch researchers exposed nerve cells (PC12 cells) to 50 Hz magnetic fields at levels up to 1,000 microtesla for periods ranging from 30 minutes to 48 hours. They found no effects on calcium levels, oxidative stress, or cell membrane integrity, even in cells that had been chemically stressed to make them more vulnerable. The exposure levels were 10,000 times higher than typical background magnetic field exposure.

Brain & Nervous SystemNo Effects Found

No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

Li L, Xiong DF, Liu JW, Li ZX, Zeng GC, Li HL. · 2014

Chinese researchers tested whether power line workers exposed to extremely low frequency electromagnetic fields while inspecting transformers and power lines showed changes in brain function and reaction times. They compared 310 inspection workers to 300 office staff using computerized tests measuring mental arithmetic, visual memory, and reaction speed. Despite many workers being exposed to electric fields above China's occupational safety standards, the study found no differences in cognitive performance between the two groups.

Brain & Nervous SystemNo Effects Found

Disturbance of the magnetic field did not affect spatial memory.

Li Y, Zhang C, Song T. · 2014

Researchers exposed rats to 50 Hz magnetic fields at 100 microT (similar to levels near some electrical appliances) for 90 days while testing their spatial memory and learning abilities using a water maze. The magnetic field exposure did not impair the rats' ability to learn or remember spatial tasks, nor did it interfere with improvements from previous training. This suggests that this level of extremely low frequency magnetic field exposure does not harm basic learning and memory functions.

Brain & Nervous SystemNo Effects Found

Neurodegenerative disease and magnetic field exposure in UK electricity supply workers

Sorahan T, Mohammed N · 2014

Researchers tracked 73,051 UK electrical workers for nearly 40 years to see if workplace magnetic field exposure increased their risk of developing Alzheimer's disease, motor neurone disease, or Parkinson's disease. The study found no statistically significant increase in any of these neurodegenerative diseases, even among workers with the highest magnetic field exposures. This suggests that occupational magnetic field exposure at the levels experienced by electrical workers does not elevate the risk of these brain diseases.

Brain & Nervous SystemNo Effects Found

Assessment of the neurotoxic potential of exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically-stressed PC12 cells.

de Groot MW, Kock MD, Westerink RH. · 2014

Researchers exposed nerve cells (PC12 cells) to 50 Hz magnetic fields at levels up to 1,000 microtesla for periods ranging from 30 minutes to 48 hours. They tested both healthy cells and chemically-stressed cells that were more vulnerable to damage. The magnetic field exposure caused no detectable effects on calcium levels, cellular damage, or oxidative stress in either type of cell.

DNA & Genetic DamageNo Effects Found

Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

Jin YB et al. · 2014

Researchers exposed four different types of human and mouse cells to 60 Hz magnetic fields (the same frequency as power lines) for 4 to 16 hours, both alone and combined with known DNA-damaging agents like radiation and hydrogen peroxide. They found no DNA damage from the magnetic field exposure alone, and the magnetic fields did not make other DNA-damaging agents more harmful. This suggests that power-frequency magnetic fields at 1 milliTesla may not directly damage cellular DNA.

Brain & Nervous SystemNo Effects Found

Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically-stressed PC12 cells.

de Groot MW, Kock MD, Westerink RH. · 2014

Researchers exposed nerve cells (PC12 cells) to 50 Hz magnetic fields at extremely high levels - up to 1000 microteslas, which is 10,000 times stronger than typical background exposure. They tested both healthy cells and chemically-stressed cells that were more vulnerable to damage. The study found no toxic effects on the nerve cells' calcium balance, oxidative stress levels, or cell membrane integrity, even at these extraordinarily high exposure levels.

Whole Body / GeneralNo Effects Found

Effect of 1800 MHz Electromagnetic Radiation Emitted from Cellular Phones on Fracture Healing.

Aslan A et al. · 2014

Researchers exposed rats with broken leg bones to cell phone radiation (1800 MHz) for 30 minutes daily to see if it affected bone healing. After examining the bones through X-rays, strength tests, and microscopic analysis, they found no significant differences in healing between exposed and unexposed rats. This suggests that typical cell phone radiation doesn't interfere with the body's natural bone repair process.

Cellular EffectsNo Effects Found

EFFECT OF DISCONTINUOUS MICROWAVES EXPOSURE (2.45 GHz) ON ESCHERICHIA COLI MEMBRANE: INVESTIGATIONS ON THERMAL VERSUS NON THERMAL EFFECTS.

Rougier C, Prorot A, Chazal P, Leveque P, Leprat P · 2014

Researchers exposed E. coli bacteria to 2.45 GHz microwave radiation (the same frequency used in microwave ovens and WiFi) at various power levels while keeping the temperature constant at body temperature. They found that higher power levels (400-2000 watts) caused slight damage to bacterial cell membranes, even though the temperature wasn't hot enough to explain this damage through heating alone. This suggests microwave radiation may have biological effects beyond just heating.

Brain & Nervous SystemNo Effects Found

Behavioral in-effectiveness of high frequency electromagnetic field in mice.

Salunke BP, Umathe SN, Chavan JG · 2014

Researchers exposed mice to 2.45 GHz electromagnetic radiation (the same frequency used by Bluetooth devices) for up to 120 days to see if it would cause anxiety, obsessive-compulsive behaviors, or depression. The study found no behavioral changes in the mice at any time point, suggesting this level of EMF exposure did not affect their mental state or behavior patterns.

Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices.

Atasoy HI, Gunal MY, Atasoy P, Elgun S, Bugdayci G. · 2013

Researchers exposed young male rats to Wi-Fi radiation (2.4 GHz) continuously for 20 weeks and found significant DNA damage in their reproductive organs. The Wi-Fi exposure also reduced the activity of key antioxidant enzymes that normally protect cells from damage. These findings suggest that prolonged Wi-Fi exposure during development could potentially harm reproductive health and fertility.

FAQs: EMF in Personal Devices & Wearables

The personal devices & wearables environment contains several common sources of electromagnetic field exposure including cell phones, laptops, bluetooth devices. Together, these 3 sources account for 3,372 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 3,372 peer-reviewed studies in our database examining EMF sources commonly found in personal devices & wearables environments. These studies cover 3 different EMF sources: Cell Phones (1,326 studies), Laptops (1,772 studies), Bluetooth Devices (274 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Laptops has the most research with 1,772 studies, followed by Cell Phones (1,326) and Bluetooth Devices (274). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in personal devices & wearables settings.