Tsoy A et al. · 2019
Researchers exposed brain cells called astrocytes to 918 MHz radiofrequency radiation (similar to cell phone signals) along with proteins that cause Alzheimer's disease damage. Surprisingly, they found that the RF exposure actually reduced harmful oxidative stress and protected the cells from damage caused by the Alzheimer's proteins. The study suggests that certain RF frequencies might have therapeutic potential for treating Alzheimer's disease.
Van Huizen AV et al. · 2019
Researchers studied how weak magnetic fields affect stem cells by examining tissue regeneration in planarians (flatworms that can regrow body parts). They found that depending on the magnetic field strength, these fields could either increase or decrease new tissue formation by altering stem cell activity and cellular stress responses. This suggests weak magnetic fields might be developed as therapeutic tools to control cell growth and healing processes.
Zheng Y, Ma XX, Dong L, Gao Y, Tian L. · 2019
Researchers exposed rat brain tissue to 15 Hz magnetic fields at medical device levels to study effects on brain connections. The magnetic fields significantly disrupted normal brain signaling that supports learning and memory, showing common electromagnetic frequencies can interfere with basic brain functions.
Ozdemir E, Demirkazik A, Taskıran AS, Arslan G. · 2019
Researchers exposed rats to 50 Hz magnetic fields (the same frequency as power lines) for 2 hours daily over 15 days and found the fields produced pain relief (analgesia). They discovered this pain-blocking effect works through serotonin receptors in the brain - the same chemical system involved in mood and sleep. The study shows that extremely low frequency magnetic fields can directly alter brain chemistry and pain perception.
Todorović D et al. · 2019
Researchers exposed cockroach nymphs to magnetic fields for 5 months and found significant biological changes, including reduced gut mass and altered antioxidant enzyme activity. The magnetic fields (both static and extremely low frequency) acted as biological stressors, disrupting the insects' cellular defense systems that protect against oxidative damage. This demonstrates that long-term magnetic field exposure can cause measurable biological stress responses in living organisms.
Luo K, Luo C, Li G, Yao X, Gao R, Hu Z, Zhang G, Zhao H. · 2019
Researchers exposed aphids to high-voltage electric fields for 20 minutes and tracked effects across 21 generations. The brief exposure caused lasting cellular damage and reduced antioxidant defenses that persisted for over 20 generations, showing electric fields can create hereditary biological effects.
Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls A · 2019
Researchers exposed baker's yeast (Saccharomyces cerevisiae) to a strong static magnetic field of 250 millitesla for 6 to 9 hours to study biological effects. They found the magnetic field initially reduced yeast growth and survival, then triggered oxidative stress - a harmful cellular condition where damaging molecules overwhelm the cell's natural defenses. The study demonstrated that even simple organisms like yeast respond to magnetic field exposure with measurable biological changes.
Consales C et al. · 2018
Researchers exposed lab-grown nerve cells with ALS-related genetic mutations to 50 Hz magnetic fields (the same frequency as power lines) for up to 72 hours. They found that while the magnetic field didn't kill cells or increase oxidative stress, it disrupted iron metabolism genes specifically in cells with the SOD1G93A mutation linked to familial ALS. This suggests that power frequency magnetic fields may interfere with cellular iron regulation in genetically susceptible individuals.
Esmaeilpour K et al. · 2018
Researchers studied whether low-frequency electrical stimulation (1 Hz) could help reverse memory problems caused by seizures in rats. They found that applying brief electrical stimulation treatments after seizures not only restored learning and memory abilities but also protected brain cells from seizure-related damage. This suggests that controlled electrical stimulation might offer a therapeutic approach for treating cognitive problems in epilepsy patients.
Cichon N et al. · 2018
Researchers studied 48 stroke patients who received either standard physical therapy alone or physical therapy plus extremely low frequency electromagnetic field (ELF-EMF) treatment. They found that patients receiving ELF-EMF therapy showed significantly increased activity in genes that produce antioxidant enzymes - the body's natural defense system against cellular damage. This suggests ELF-EMF therapy may help stroke patients recover by boosting their cells' ability to protect themselves from harmful oxidative stress.
Cichoń N et al. · 2018
Polish researchers studied whether extremely low frequency electromagnetic fields could help stroke patients recover brain function during rehabilitation. They found that patients receiving EMF therapy alongside standard rehabilitation showed significantly higher levels of brain growth factors that promote healing and scored better on cognitive and functional recovery tests. This suggests EMF therapy may enhance the brain's natural ability to rewire itself after stroke damage.
Bukia N et al. · 2018
Researchers studied whether low-frequency electromagnetic fields could reduce seizures in epileptic rats by affecting brain chemical systems. They found that acoustic-range electromagnetic exposure decreased seizure activity by changing how neurotransmitters (brain chemicals like GABA and glutamate) function in the brain. This suggests electromagnetic fields might influence seizure disorders through specific brain chemistry pathways.
Piccinetti CC et al. · 2018
Researchers exposed zebrafish embryos to 100 MHz radiofrequency radiation (similar to FM radio frequencies) to study developmental effects. They found the radiation triggered oxidative stress, slowed growth, and activated cellular damage repair mechanisms during critical early development stages. This study demonstrates that EMF radiation can cause measurable biological effects beyond just heating tissue, providing important evidence for non-thermal health impacts.
Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. · 2018
Researchers exposed rats to Wi-Fi radiation (2.4 GHz) for 4 hours daily over 45 days and found it significantly impaired the pancreas's ability to produce insulin while causing elevated blood sugar levels. The Wi-Fi exposure also increased harmful oxidative stress in pancreatic tissue and reduced the body's natural antioxidant defenses. This suggests that chronic Wi-Fi radiation exposure may interfere with blood sugar regulation, a critical function for metabolic health.
López-Furelos A et al. · 2018
Spanish researchers exposed immune cells (macrophages) to radio frequency radiation at cell phone frequencies (900 MHz and 2450 MHz) for up to 72 hours. They found that the radiation significantly impaired the cells' ability to fight infections and triggered inflammatory responses, with combined frequencies causing more damage than single frequencies. This suggests that everyday exposure to multiple wireless signals simultaneously may compromise immune function.
Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. · 2018
Researchers exposed rats to Wi-Fi radiation (2.45 GHz) continuously for 10 weeks to study its effects on cellular defense systems. They found that Wi-Fi exposure significantly weakened the animals' antioxidant defenses, reducing the activity of key protective enzymes that normally protect cells from damage. This suggests that chronic Wi-Fi exposure may compromise the body's natural ability to defend against cellular stress.
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. · 2018
Researchers exposed rats to cell phone frequencies (900 and 1800 MHz) for one hour daily, five days a week for an entire year, then examined brain tissue for damage. They found significant cellular damage including cell death, oxidative stress, and disrupted calcium channels in the hippocampus (memory center) and nerve tissues. The higher frequency (1800 MHz) caused more severe damage than the lower frequency, suggesting a dose-response relationship.
Akimoto T et al. · 2018
Researchers exposed human brain cancer cells to alternating magnetic fields (280 kHz frequency) for 30 minutes while treating them with an anti-cancer compound called Compound C. The magnetic field exposure significantly enhanced the cancer-killing effects of the drug, causing more cancer cells to die and preventing them from multiplying. This suggests that magnetic fields might be used to make cancer treatments more effective while potentially allowing lower drug doses.
Kimsa-Dudek M et al. · 2018
Researchers exposed human skin cells to fluoride and static magnetic fields to study gene activity. While fluoride damaged genes that protect cells from harm, magnetic field exposure restored normal gene function. This suggests magnetic fields might help protect cells against certain chemical toxins.
Gupta SK, Mesharam MK, Krishnamurthy S. · 2018
Researchers exposed rats to 2450 MHz electromagnetic radiation (the frequency used by WiFi and microwave ovens) for one hour daily over 28 days and found significant cognitive impairment. The radiation damaged brain cell powerhouses called mitochondria, triggered cell death pathways, and disrupted the brain's chemical messaging system. This suggests that chronic exposure to common wireless frequencies may harm memory and thinking abilities through multiple biological mechanisms.
Ruigrok HJ et al. · 2018
Researchers tested whether 1800 MHz radiofrequency radiation from wireless devices could activate heat-sensitive cell channels through non-thermal effects. They found RF radiation only activated these channels when it produced actual heating, providing no evidence for non-thermal biological effects at the cellular level.
Lasalvia M et al. · 2018
Researchers exposed human immune cells to 1.8 GHz cell phone radiation for up to 20 hours. The radiation caused cell deformation, DNA changes, and disrupted cellular energy production. These findings raise safety concerns about long-term EMF exposure effects on human health.
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018
Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.
Laszlo AM et al. · 2018
Researchers exposed turkeys to 50 Hz magnetic fields (the type from power lines) for three weeks and found it disrupted their stress response system by reducing a key cellular signaling pathway called beta-adrenoceptor function. The birds' systems returned to normal after five weeks without exposure, suggesting the effects were reversible. This matters because it shows even relatively low-level magnetic field exposure can alter fundamental biological processes in living animals.
Hong I et al. · 2018
Researchers exposed rat brain cells to weak magnetic fields at 1 Hz and 10 Hz frequencies, finding both altered cellular energy processes, with 1 Hz having stronger effects. This demonstrates that magnetic fields can change how brain cells function biochemically, providing insights into magnetic stimulation's neural effects.