3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

WiFi in Schools: What Research Says About Children's Health

Based on 375 peer-reviewed studies

Share:

Schools have rapidly adopted WiFi technology, exposing children to radiofrequency electromagnetic fields for 6-8 hours daily throughout their developmental years. This widespread exposure has prompted researchers to investigate potential health effects specific to children.

Children are not simply small adults when it comes to EMF exposure. Their skulls are thinner, their brain tissue has higher water content, and their nervous systems are still developing. These factors may make children more susceptible to any effects of RF-EMF exposure.

Here we examine the research on children, WiFi-frequency radiation, and health outcomes relevant to the school environment.

Key Research Findings

  • Children's brains absorb significantly more RF radiation than adult brains
  • Studies report effects on memory and attention in RF-exposed children
  • Cumulative exposure over school years raises unique considerations

Related Studies (375)

Acute mobile phone effects on pre-attentive operation.

Papageorgiou CC et al. · 2006

Researchers exposed 19 healthy adults to 900 MHz mobile phone radiation while measuring their brain activity during a working memory test. The radiation significantly altered brain wave patterns called P50 components, which reflect how the brain processes information before conscious awareness. These changes suggest that mobile phone emissions can affect fundamental brain processing, even during brief exposures.

Mobile phone effects on children's event-related oscillatory EEG during an auditory memory task.

Krause CM et al. · 2006

Finnish researchers studied how mobile phone radiation affects brain activity in 15 children (ages 10-14) while they performed memory tasks. When exposed to 902 MHz radiation from an active phone, the children showed measurable changes in their brain wave patterns during both memory encoding and recognition phases. This demonstrates that cell phone radiation can directly alter brain function in developing minds, even during short-term exposure.

The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.

Keshvari J, Keshvari R, Lang S. · 2006

Researchers used computer modeling to examine how radiofrequency energy from cell phones is absorbed by children's heads compared to adults, accounting for the fact that children's tissues have higher water content. They tested common cell phone frequencies (900, 1800, and 2450 MHz) and found that even when tissue water content was increased by 5-20% to simulate children's physiology, energy absorption (SAR) varied by only about 5% on average. The study suggests that tissue composition differences between children and adults may have less impact on RF absorption than previously thought.

Neuropsychological sequelae of digital mobile phone exposure in humans.

Keetley V, Wood AW, Spong J, Stough C. · 2006

Researchers tested 120 people on cognitive tasks while exposed to cell phone radiation at maximum legal power levels. They found that phone radiation slowed down simple reaction times (how quickly people could respond to basic signals) but improved performance on complex memory tasks. This suggests cell phone radiation can alter brain function in measurable ways, though the effects varied depending on the type of mental task.

Effect of pierced metallic objects on sar distributions at 900 MHz.

Fayos-Fernandez J et al. · 2006

Spanish researchers studied how metallic ear piercings affect radiation absorption when using cell phones at 900 MHz. They found that wearing metal objects near your ear increases peak SAR (specific absorption rate) values, meaning more electromagnetic energy gets absorbed by your head tissues. This suggests that common accessories like earrings could amplify your exposure to cell phone radiation.

Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans.

Eliyahu I et al. · 2006

Israeli researchers exposed 36 healthy men to cell phone radiation at 890 MHz for two hours while they performed cognitive tasks designed to test different brain regions. They found that radiation exposure to the left side of the brain significantly slowed reaction times for left-hand responses, particularly during the second hour of exposure. This suggests that cell phone radiation can impair cognitive performance in the specific brain areas closest to the phone.

Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.

de Salles AA, Bulla G, Rodriguez CE. · 2006

Researchers used computer simulations to compare how much radiofrequency radiation children's heads absorb from mobile phones compared to adults. They found that 10-year-old children absorb over 60% more radiation in their heads than adults when using the same phone. This happens because children have smaller heads, thinner skulls, and different tissue properties that allow deeper radiation penetration.

Engrossed in conversation: The impact of cell phones on simulated driving performance.

Beede KE, Kass SJ. · 2006

Researchers tested 36 college students in driving simulators to see how hands-free cell phone conversations affected their driving ability. They found that talking on the phone significantly impaired performance in all four areas measured: traffic violations (like speeding), lane maintenance, attention lapses (like stopping at green lights), and reaction times. The study demonstrates that even hands-free phone calls create dangerous cognitive distractions while driving.

Psychophysiological tests and provocation of subjects with mobile phone related symptoms.

Wilen J, Johansson A, Kalezic N, Lyskov E, Sandstrom M. · 2006

Swedish researchers exposed 20 people who experience symptoms from mobile phones and 20 people without symptoms to 900 MHz cell phone radiation for 30 minutes at levels typical of phone use. While the radiation didn't cause immediate measurable changes in either group, the symptomatic individuals showed different nervous system patterns during cognitive tests, suggesting their autonomic nervous systems may function differently regardless of radiation exposure.

Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations.

Hutter HP, Moshammer H, Wallner P, Kundi M. · 2006

Researchers measured EMF exposure from cell phone towers in the bedrooms of 365 people living nearby and tested their health and thinking abilities. Even though the radiation levels were extremely low (far below safety guidelines), people closer to the towers reported more headaches and showed changes in mental performance. This suggests that even very weak EMF exposure from cell towers might affect how people feel and think.

Psychophysiological tests and provocation of subjects with mobile phone related symptoms

Wilen J, Johansson A, Kalezic N, Lyskov E, Sandstrom M · 2006

Swedish researchers exposed 20 people who experience symptoms from mobile phones (like headaches or fatigue) and 20 people without such symptoms to 30 minutes of GSM cell phone radiation at 1 W/kg SAR. While the radiation exposure itself didn't cause measurable changes in either group, the symptomatic individuals showed different nervous system patterns during cognitive tests, suggesting their autonomic nervous systems may respond differently to stress regardless of EMF exposure.

Brain & Nervous SystemNo Effects Found116 citations

Effect of 902 MHz mobile phone transmission on cognitive function in children.

Preece AW et al. · 2005

Researchers tested whether cell phone radiation at 902 MHz affects thinking and reaction time in 18 children ages 10-12. While children showed slightly faster reaction times during phone exposure compared to no exposure, the differences were not statistically significant. The study failed to replicate earlier findings in adults, possibly because it used a weaker GSM phone rather than the more powerful analog phone used in previous research.

Brain & Nervous SystemNo Effects Found

Effects of prolonged wakefulness combined with alcohol and hands-free cell phone divided attention tasks on simulated driving.

Iudice A et al. · 2005

Researchers tested how hands-free cell phone use affects driving ability when combined with alcohol and sleep deprivation. They found that using a hands-free phone while driving actually helped counteract some of alcohol's impairment effects when drivers were well-rested. However, when drivers were severely sleep-deprived (24 hours awake), the combination of alcohol and phone use created the most dangerous driving conditions.

Brain & Nervous SystemNo Effects Found104 citations

Electromagnetic field emitted by 902 MHz mobile phones shows no effects on children's cognitive function.

Haarala C et al. · 2005

Researchers tested whether 902 MHz cell phone radiation affects children's thinking abilities by having 32 kids aged 10-14 take cognitive tests while exposed to both active and inactive phones. They found no differences in reaction time or accuracy between the two conditions. This challenges earlier studies suggesting cell phone radiation might actually improve cognitive performance.

Brain & Nervous SystemNo Effects Found

Whole-body exposure to 2.45GHz electromagnetic fields does not alter 12-arm radial-maze with reduced access to spatial cues in rats.

Cosquer B, Kuster N, Cassel JC. · 2005

Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used in WiFi routers and microwave ovens) and tested their ability to navigate a maze with limited visual landmarks. The rats showed no impairment in their spatial memory or navigation abilities after the exposure. This study was designed to replicate earlier research that had suggested microwave exposure could affect brain function.

SAR / Device AbsorptionNo Effects Found

Differences in RF energy absorption in the heads of adults and children.

Christ A, Kuster N. · 2005

Researchers reviewed how radiofrequency energy from cell phones is absorbed differently in children's heads versus adults' heads. Contrary to earlier assumptions, they found that children don't necessarily absorb more RF energy than adults despite having smaller heads. The study identified that factors like tissue properties and ear structure still need more research to fully understand exposure differences.

Brain & Nervous SystemNo Effects Found

No effect on cognitive function from daily mobile phone use.

Besset A, Espa F, Dauvilliers Y, Billiard M, de Seze R. · 2005

French researchers tested whether daily mobile phone use affects cognitive function by having 55 people use phones for 2 hours a day, 5 days a week for nearly a month. They found no measurable effects on memory, attention, information processing, or executive function compared to a control group using inactive phones. This suggests that typical daily phone use doesn't immediately impair cognitive performance, at least when tested after a 13-hour rest period.

Effects of practice, age, and task demands, on interference from a phone task while driving.

Shinar D, Tractinsky N, Compton R · 2005

Researchers studied how phone conversations affect driving performance over time, testing drivers in a simulator across five sessions with hands-free phone tasks. They found that while phone conversations initially interfere with driving skills, drivers gradually adapt and the interference diminishes with practice, though older drivers and more complex phone tasks still showed greater impairment. This suggests the cognitive load from phone use while driving can be partially managed through experience, but significant risks remain.

Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.

Keshvari J, Lang S. · 2005

Researchers used computer models to compare how much radiofrequency energy is absorbed in children's heads versus adults' heads when exposed to cell phone frequencies. They found that differences in energy absorption depend more on individual head shape and anatomy rather than age itself. This challenges the common assumption that children automatically absorb more RF energy than adults.

Impact of the mobile phone on junior high-school students' friendships in the Tokyo metropolitan area.

Kamibeppu K, Sugiura H. · 2005

Japanese researchers surveyed 578 eighth-grade students in Tokyo to understand how mobile phones affected their friendships and behavior. They found that students who owned phones (about half the group) sent more than 10 emails daily to classmates, stayed up late messaging, and reported feeling they couldn't live without their devices. While sociable students said phones helped their friendships, many also experienced anxiety and signs of addiction-like dependence.

Cellular telephones and driving performance: the effects of attentional demands on motor vehicle crash risk.

Hunton J, Rose JM. · 2005

Researchers compared how hands-free cell phone conversations affect driving performance compared to talking with a passenger in the car. They found that cell phone conversations require significantly more mental attention and interfere more with driving than in-person conversations because drivers must work harder to compensate for missing visual and social cues. The study also showed that people with specialized communication training (like pilots) performed better while using phones and driving.

Simulation of exposure and SAR estimation for adult and child heads exposed to radiofrequency energy from portable communication devices.

Bit-Babik et al. · 2005

Researchers used computer modeling to compare how much radiofrequency energy from cell phones is absorbed by children's heads versus adult heads. They found that children's smaller heads absorb about the same amount of energy per gram of tissue as adult heads when exposed to the same phone emissions. This challenges earlier concerns that children might face dramatically higher radiation exposure from mobile devices.

Blood-brain barrier and electromagnetic fields: Effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45GHz microwaves in rats.

Cosquer B, Vasconcelos AP, Frohlich J, Cassel JC. · 2005

Researchers tested whether 2.45 GHz microwaves (WiFi frequency) could damage the blood-brain barrier, a protective shield preventing harmful substances from entering the brain. After exposing rats for 45 minutes, they found no evidence that microwave radiation weakened this critical brain protection system.

Brain & Nervous SystemNo Effects Found118 citations

Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: a double blind replication study.

Krause CM et al. · 2004

Researchers exposed 24 people to cell phone radiation (902 MHz) while they performed memory tests and measured their brain waves. Unlike their previous study which found brain wave changes, this double-blind replication study found no consistent effects on brain activity, though it did find more memory errors during EMF exposure. The inconsistent results highlight how difficult it can be to replicate EMF research findings.

Brain & Nervous SystemNo Effects Found

Effects of GSM electromagnetic field on the MEG during an encoding-retrieval task.

Hinrichs H, Heinze HJ. · 2004

German researchers tested whether cell phone radiation affects memory by measuring brain activity while people memorized words. They found that GSM 1800 radiation (the type used in European cell phones) altered specific brain wave patterns during memory formation, though participants didn't notice any difference in their actual memory performance. This suggests cell phone radiation can interfere with normal brain processing even when we don't feel any obvious effects.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.