Hagström M, Auranen J, Ekman R. · 2013
Researchers surveyed 206 Finnish people who believe they suffer from electromagnetic hypersensitivity (EHS), a condition where individuals experience symptoms they attribute to EMF exposure from devices like computers and cell phones. The study found that 76% reported improvement when they reduced or avoided EMF exposure, with the most effective treatments being dietary changes, supplements, and exercise rather than conventional medical approaches. The findings suggest that people experiencing EHS symptoms may benefit more from EMF avoidance and lifestyle modifications than from standard psychiatric treatments.
Gao X, Luo R, Ma B, Wang H, Liu T, Zhang J, Lian Z, Cui X. · 2013
Researchers exposed pregnant rats to 900MHz cell phone radiation for three hours daily throughout pregnancy and found significant brain damage in both mothers and offspring, including swollen brain cells and reduced antioxidant defenses. However, when rats were given vitamin E supplements during pregnancy, the protective antioxidant largely prevented this brain damage. This suggests that EMF exposure during pregnancy can harm developing brains, but certain nutrients may offer protection.
de Vocht F, Hannam K, Buchan I. · 2013
Researchers analyzed cancer data from 165 countries to explore potential environmental risk factors for brain and nervous system cancers. They found that countries with higher rates of mobile phone subscriptions consistently showed higher rates of brain cancer, with the data suggesting a latency period (time between exposure and disease) of at least 11-12 years, possibly over 20 years. While this type of population-level analysis cannot prove causation, it provides important signals that warrant further investigation into the relationship between wireless technology and brain cancer.
Carlberg M, Söderqvist F, Hansson Mild K, Hardell L. · 2013
Swedish researchers studied 709 people with meningiomas (brain tumors that grow on the protective membranes around the brain) to see if mobile and cordless phone use increased their risk. While overall phone use showed no clear link to these tumors, people with the highest usage (over 2,376 hours total) did show some increased risk. The authors concluded there wasn't enough evidence to prove phones cause meningiomas, but noted that longer-term studies are needed.
Benson VS et al. · 2013
British researchers followed nearly 800,000 middle-aged women for 7 years to see if mobile phone use increased their risk of brain tumors and other cancers. They found no increased risk for most brain tumors, including the most common types (glioma and meningioma), but did find that women who used phones for 10+ years had more than double the risk of developing acoustic neuroma, a rare tumor of the hearing nerve. This large study provides mixed evidence about mobile phone safety, with reassurance for most brain cancers but concern for one specific type.
Behari J, Nirala JP. · 2013
Researchers tested how 3G mobile phone radiation (1718.5 MHz) affects brain tissue using a laboratory phantom (artificial brain material) designed to mimic a small rat brain. They found that the amount of radiation absorbed (called SAR) varied significantly depending on the phone's angle and position, with some measurements showing higher absorption than expected. The study reveals important flaws in how we currently measure radiation exposure from mobile devices.
Eser O et al. · 2013
Turkish researchers exposed rats to radiofrequency radiation at cell phone frequencies (900, 1800, and 2450 MHz) for one hour daily over two months. They found severe brain damage including cell death and shrunken brain tissue in key areas like the frontal cortex and brain stem, along with increased oxidative stress and inflammation. This demonstrates that chronic RF exposure can cause structural brain damage even at relatively low daily exposure levels.
Maaroufi K et al. · 2013
French researchers exposed rats to cell phone radiation (900 MHz) for one hour daily over three weeks and tested their cognitive abilities using various learning tasks. The rats showed impaired performance on exploratory tasks and changes in brain chemicals, particularly in the hippocampus region crucial for memory. This suggests that even moderate exposure to cell phone radiation can affect brain function and cognitive performance.
Tombini M et al. · 2013
Researchers exposed 10 epilepsy patients to mobile phone radiation for 45 minutes and measured brain activity. Phone radiation increased brain excitability only when positioned opposite to patients' seizure-prone brain areas, suggesting mobile phones can uniquely affect brain function in epilepsy patients.
Eser O et al. · 2013
Researchers exposed rats to cell phone radiation frequencies for one hour daily over two months. The study found severe brain cell damage, increased harmful stress chemicals, and inflammation in multiple brain regions, demonstrating that prolonged mobile device frequency exposure can damage brain tissue.
Redmayne M, Smith E, and Abramson MJ · 2013
New Zealand researchers studied 400 teenagers' wireless phone use and health symptoms. Students making over 6 calls weekly had 2.4 times higher headache risk, while wireless headset users showed doubled depression and sleep problems. These findings suggest teen phone habits may impact wellbeing.
Lustenberger C et al. · 2013
Swiss researchers exposed 16 men to cell phone-like radiofrequency signals during sleep while monitoring brain activity. The RF exposure altered brain waves and reduced participants' ability to improve motor skills by 20% compared to nights without exposure, suggesting nighttime RF may disrupt sleep-dependent learning processes.
Gao X, Luo R, Ma B, Wang H, Liu T, Zhang J, Lian Z, Cui X · 2013
Pregnant rats exposed to 900MHz cell phone radiation for three hours daily showed brain damage in mothers and offspring, including cellular swelling and reduced antioxidant defenses. Vitamin E supplements prevented most damage, suggesting antioxidants may protect developing brains from EMF-related oxidative stress during pregnancy.
Ntzouni MP et al. · 2013
Mice exposed to cell phone radiation (1.8 GHz) for 90 minutes daily developed memory problems that worsened over time. Memory impairments persisted two weeks after exposure ended but fully recovered after a month. The radiation level was below current safety limits.
Bilgici B, Akar A, Avci B, Tuncel OK. · 2013
Researchers exposed rats to cell phone-level radiofrequency radiation (900 MHz) for one hour daily over three weeks and measured damage markers in brain tissue. The study found significant increases in two key indicators of cellular damage - lipid oxidation and protein damage - in the brain tissue of exposed animals. Interestingly, rats given garlic powder showed protection against this brain damage, suggesting antioxidants may help counteract RF radiation effects.
Banaceur S, Banasr S, Sakly M, Abdelmelek H. · 2013
Researchers exposed mice with Alzheimer's-like symptoms to WiFi signals (2.4 GHz) for two hours daily over a month at levels similar to cell phone exposure. Surprisingly, the WiFi exposure actually improved cognitive performance and memory in the Alzheimer's mice compared to unexposed mice. This unexpected finding suggests radiofrequency radiation might have therapeutic potential for certain brain conditions, though the mechanism remains unclear.
Aboul Ezz HS, Khadrawy YA, Ahmed NA, Radwan NM, El Bakry MM. · 2013
Researchers exposed rats to cell phone radiation (1800 MHz, similar to 2G networks) for up to 4 months and measured key brain chemicals called neurotransmitters that control mood, memory, and learning. The radiation significantly altered levels of dopamine, serotonin, and norepinephrine across four different brain regions. These chemical changes could explain why some people report memory problems, learning difficulties, and increased stress after heavy cell phone use.
Deshmukh PS et al. · 2013
Scientists exposed rats to cell phone-level microwave radiation (900 MHz) for 30 days at extremely low power levels. They discovered DNA damage in brain tissue even at exposures thousands of times weaker than current safety limits, suggesting cellular harm may occur below regulatory thresholds.
Manikonda PK et al. · 2013
Researchers exposed young rats to extremely low frequency magnetic fields (the type from power lines and appliances) for 90 days and found significant oxidative stress damage in their brains. The damage was dose-dependent, meaning higher field strengths caused more harm, and affected different brain regions differently. This suggests that chronic exposure to these common magnetic fields may damage brain cells by overwhelming the body's natural antioxidant defenses.
Kumar S et al. · 2013
Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power lines) for 2 hours daily over 8 weeks. They found that this exposure helped restore normal pain responses and brain chemistry that had been disrupted by the spinal injuries. The magnetic field treatment appeared to normalize levels of key brain chemicals like serotonin and GABA that control pain perception.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to 120 Hz magnetic fields and found the fields made brain blood vessels leaky and dilated. This suggests EMF exposure might weaken the blood-brain barrier, which normally protects the brain from harmful substances in the bloodstream.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (the type emitted by power lines and appliances) for 15 days and found these fields significantly altered brain wave patterns, particularly enhancing activity in the right hemisphere. When caffeine was given alongside the magnetic field exposure, it appeared to partially counteract some of the brain changes, especially in areas controlling movement.
Deng Y, Zhang Y, Jia S, Liu J, Liu Y, Xu W, Liu L. · 2013
Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) at 2 milliTesla for 4 hours daily over 8 weeks, testing both memory and brain chemistry. The magnetic field exposure caused significant memory impairment in maze tests and increased oxidative stress markers in the brain, similar to the damage caused by aluminum toxicity. These findings suggest that prolonged exposure to strong magnetic fields can harm brain function through oxidative damage.
Celik MS et al. · 2013
Researchers exposed rats to power line frequency magnetic fields while giving them manganese, a potentially toxic metal. The magnetic field exposure significantly increased manganese buildup in the brain, kidneys, and liver, suggesting EMF exposure may impair the body's ability to eliminate toxic substances.
Bertolino G, Dutra Souza HC, de Araujo JE. · 2013
Researchers exposed rats with chemically-induced brain damage (mimicking Parkinson's disease) to static magnetic fields of 3200 gauss for 14 days. The magnetic field exposure helped preserve neurons in the brain region affected by Parkinson's and improved motor function compared to rats that didn't receive magnetic treatment. This suggests static magnetic fields might have therapeutic potential for protecting brain cells from neurodegenerative damage.