Abramson MJ et al. · 2009
Australian researchers tested cognitive function in 317 seventh-grade students and found that those who made more mobile phone calls performed differently on thinking tasks. Students with higher phone use showed faster but less accurate responses on complex cognitive tests, along with poorer working memory. However, since texting showed similar patterns, the researchers concluded these changes likely resulted from behavioral adaptations to frequent phone use rather than radiofrequency radiation exposure.
Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M · 2009
Researchers exposed rats to mobile phone signals (50 missed calls daily for 4 weeks) and then tested their ability to navigate a water maze to find a hidden platform. Phone-exposed rats took 3 times longer to find the target area and spent half as much time in the correct location compared to unexposed rats. This suggests mobile phone radiation may impair spatial memory and learning ability.
Luria R, Eliyahu I, Hareuveny R, Margaliot M, Meiran N. · 2009
Researchers had 48 men perform memory tasks while exposed to cell phone radiation on different sides of their heads. Left-side phone exposure significantly slowed right-hand reaction times during early testing, demonstrating that cell phone radiation can measurably affect brain function and cognitive performance.
Wiholm C et al. · 2009
Researchers exposed participants to mobile phone radiation at 1.4 W/kg (similar to real phone use) for 2.5 hours while they performed spatial memory tasks on a computer. Surprisingly, people who reported symptoms from phone use actually performed better during radiation exposure, while those without symptoms showed no change. This unexpected finding challenges assumptions about how phone radiation affects brain function.
Wiholm C et al. · 2009
Researchers exposed volunteers to cell phone radiation for 2.5 hours while they performed spatial memory tasks (navigating a virtual maze). Surprisingly, people who already experienced symptoms from phone use actually performed better on the memory tasks during radiation exposure, while those without symptoms showed no change. This unexpected finding suggests that radiation may affect the brain differently depending on whether someone is already sensitive to electromagnetic fields.
Daniels WM, Pitout IL, Afullo TJ, Mabandla MV · 2009
Young rats exposed to cell phone radiation (840 MHz) for three hours daily showed subtle behavioral changes including reduced activity and increased grooming, despite normal memory and brain structure. This suggests early EMF exposure may affect brain function in ways not immediately apparent.
Unterlechner M, Sauter C, Schmid G, Zeitlhofer J. · 2008
Researchers exposed 40 healthy volunteers to UMTS mobile phone-like electromagnetic fields at 1.97 GHz while testing their attention and reaction time on computer tasks. The study found no statistically significant effects on cognitive performance, even at exposure levels up to 1.49 W/kg SAR (specific absorption rate, a measure of how much energy the body absorbs). This suggests that short-term exposure to 3G mobile phone signals does not immediately impair basic cognitive functions like attention and reaction speed.
Riddervold IS et al. · 2008
Danish researchers tested whether 45-minute exposures to UMTS cell tower radiation (2140 MHz) affected cognitive performance and symptoms in 40 teenagers and 40 adults. They found no significant differences in cognitive test performance between real and sham exposures, though participants reported slightly more headaches during radiation exposure, which may have been due to baseline differences rather than the radiation itself.
Kleinlogel H et al. · 2008
Researchers tested whether cell phone radiation from GSM and UMTS networks affects brain activity and cognitive performance in 15 healthy adults. They measured brain waves and reaction times during various mental tasks while participants were exposed to phone radiation at levels typical of actual phone use. The study found no significant changes in brain activity or cognitive function during EMF exposure compared to fake (sham) exposure.
Unterlechner M, Sauter C, Schmid G, Zeitlhofer J · 2008
Researchers exposed 40 healthy adults to 3G mobile phone signals at 1.97 GHz for 90 minutes while testing their attention and reaction time through computer tasks. The study found no immediate effects on cognitive performance at exposure levels up to 0.63 W/kg SAR (specific absorption rate), which represents the amount of RF energy absorbed by brain tissue. This suggests that short-term exposure to 3G phone signals does not impair basic mental functions like attention and reaction speed.
Stefanics G, Thuróczy G, Kellényi L, Hernádi I · 2008
Researchers exposed 29 people to 3G mobile phone radiation for 20 minutes and measured their brain's electrical activity while they performed a listening task that required attention and focus. They found no measurable changes in brain wave patterns or response times compared to fake exposure sessions. This suggests that brief exposure to 3G phone radiation doesn't immediately alter basic brain processing functions related to hearing and attention.
Riddervold IS et al. · 2008
Danish researchers exposed 80 people (teenagers and adults) to cell tower radiation at 2.14 GHz for 45 minutes to test whether it affected their thinking abilities and caused symptoms. They found no significant impact on cognitive performance, though participants reported slightly more headaches during exposure compared to fake exposure sessions. The study suggests cell tower radiation at these levels doesn't impair mental function in the short term.
Kleinlogel H et al. · 2008
Swiss researchers tested whether cell phone radiation from both older GSM and newer UMTS networks affects brain function and cognitive performance in 15 healthy adults. They measured brain wave responses and reaction times during various mental tasks while exposing participants to phone radiation at levels similar to actual phone use (SAR 0.1 and 1 W/kg). The study found no significant changes in any measured brain or cognitive functions compared to fake exposure.
Curcio G et al. · 2008
Italian researchers exposed 24 people to GSM mobile phone radiation (902.40 MHz) for three separate 15-minute sessions and tested their reaction times and finger coordination after each exposure. They found no measurable effects on psychomotor performance, though there was a slight non-significant trend toward faster reaction times. The study suggests that brief, repeated mobile phone exposures at typical power levels don't impair basic motor skills and reflexes.
Ammari M et al. · 2008
French researchers exposed rats to 900 MHz cell phone radiation (the same frequency used by GSM phones) for either 8 or 24 weeks, then tested their spatial memory using a maze. The rats showed no memory problems compared to unexposed rats, even at radiation levels up to four times higher than current safety limits. This suggests that chronic cell phone radiation exposure may not impair spatial learning and memory functions in the brain.
Landgrebe M et al. · 2008
Researchers compared 89 people who report electromagnetic hypersensitivity (EHS) with 107 healthy controls using brain stimulation tests and cognitive assessments. They found that EHS patients had measurable differences in brain function, including reduced ability to distinguish between real and fake electromagnetic stimulation, and altered patterns of brain excitability that varied by age. The study suggests these individuals may have genuine neurobiological differences that make them more vulnerable to electromagnetic effects.
Khan MM. · 2008
Researchers surveyed 286 medical students about their mobile phone use and health symptoms. They found that 44% of students linked their health problems to phone use, with the most common complaints being memory problems (41%), sleep issues (39%), and concentration difficulties (34%). The study suggests that even moderate daily phone use may be associated with multiple neurological and physical symptoms.
Huss A et al. · 2008
Researchers analyzed 59 studies on radiofrequency radiation health effects to see if funding sources influenced results. They found that studies funded exclusively by the telecommunications industry were 90% less likely to report harmful health effects compared to studies funded by public agencies or charities. This pattern held even after accounting for study quality and other factors.
Divan HA, Kheifets L, Obel C, Olsen J. · 2008
Danish researchers followed over 13,000 children from pregnancy through age 7 to study whether mothers' cell phone use during pregnancy and children's own phone use affected behavior. They found that children exposed to cell phones both before birth and after had 80% higher odds of behavioral problems like hyperactivity and emotional difficulties. While the researchers noted other factors could explain this connection, the findings raise concerns given how widely cell phones are used.
Barth A et al. · 2008
Researchers analyzed 19 studies on how cell phone radiation affects brain function, focusing on attention and memory tasks. They found that exposure to GSM mobile phone frequencies (900-1800 MHz) caused small but measurable changes in reaction times and working memory performance, including faster responses on simple tasks but slower responses and more errors on complex memory tasks. This suggests that the radiofrequency radiation from phones may subtly influence how our brains process information.
Fu Y, Wang C, Wang J, Lei Y, Ma Y. · 2008
Chinese researchers exposed mice to extremely low-frequency magnetic fields (the same type emitted by power lines and household appliances) for either 7 or 25 days, then tested their spatial memory using a maze. While short-term exposure had no effect, mice exposed to 50 Hz fields for 25 days showed impaired ability to recognize new areas in the maze. This suggests that chronic exposure to power-frequency magnetic fields may interfere with spatial memory and navigation abilities.
Divan HA, Kheifets L, Obel C, Olsen J · 2008
Danish researchers tracked 13,000 children from pregnancy through age 7, finding those exposed to cell phones both before and after birth had 80% higher odds of behavioral problems like hyperactivity. The findings raise public health concerns given widespread cell phone use.
Nittby H et al. · 2008
Swedish researchers exposed rats to cell phone radiation for 55 weeks and found significant memory problems compared to unexposed rats. The exposed animals had trouble remembering objects and when they encountered them, suggesting chronic mobile phone radiation may impair specific memory functions.
Mortazavi SM et al. · 2008
Researchers tested whether electromagnetic fields from MRI machines and mobile phones increase mercury release from dental fillings. They found that 30-minute MRI exposure increased mercury levels in saliva by 31%, and mobile phone use significantly increased mercury in urine compared to controls. This suggests that common EMF exposures may accelerate the release of toxic mercury from dental amalgam fillings.
Ammari M et al. · 2008
French researchers exposed rats to 900-MHz cell phone radiation for up to 24 weeks to test whether it would impair their spatial memory and navigation abilities. The rats showed no memory deficits even when exposed to radiation levels 3-12 times higher than typical cell phone use. This suggests that chronic exposure to GSM cell phone signals may not directly damage the brain's memory systems.