3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Exposure Types

Radio Frequency (RF)

Share:

Radio frequency electromagnetic fields are produced by wireless communication devices and broadcast signals. They range from about 3 kHz to 300 GHz and include frequencies used by cell phones, WiFi, Bluetooth, and 5G. RF is typically measured in microwatts per square meter (µW/m²) or milliwatts per square centimeter (mW/cm²).

Concern Level Thresholds

Based on Building Biology Institute guidelines (µW/m² (microwatts per square meter)):

No Concern
< 0.1 µW/m²
Slight Concern
0.1 – 10 µW/m²
Severe Concern
10 – 1,000 µW/m²
Extreme Concern
> 1,000 µW/m²

See where common exposures fall on the scale:

Your RF Exposure in ContextA logarithmic scale showing your reading relative to Building Biology concern thresholds and FCC regulatory limits.Your RF Exposure in ContextNo ConcernSlightSevereExtreme0.1101,000FCC Limit 0.01100,000 uW/m2

Showing 376 studies with measured radio frequency (rf) exposure

Exposure to radiation from global system for mobile communications at 1,800 MHz significantly changes gene expression in rat hippocampus and cortex.

Nittby H et al. · 2008

Swedish researchers exposed rats to cell phone radiation at 1,800 MHz for six hours and found significant changes in brain gene expression. The radiation altered genes controlling cell membranes and signal transmission in memory-critical brain regions, occurring at levels similar to extended human cell phone use.

Intravital Computer Morphometry on Protozoa: A Method for Monitoring of the Morphofunctional Disorders in Cells Exposed in the Cell Phone Communication

Uskalova DV, Igolkina YV, Sarapultseva EI. · 2016

Russian researchers exposed single-celled organisms (protozoa) to cell phone frequency radiation (1 GHz) at very low power levels for 30 minutes to 6 hours. They found significant changes in cell shape and structure that correlated with reduced movement ability. The researchers suggest this method could help detect early cellular damage from mobile phone radiation, particularly effects on sperm cell mobility.

Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain

Dasdag S, Akdag MZ, Kizil G, Kizil M, Cakir DU, Yokus B · 2012

Researchers exposed rats to cell phone radiation (900 MHz) for 2 hours daily over 10 months and examined their brains for signs of damage. They found significantly increased protein carbonyl levels, which indicates protein damage from oxidative stress. This suggests that long-term cell phone radiation exposure may harm brain proteins, potentially contributing to neurodegenerative processes.

Electromagnetic pulses induce fluctuations in blood pressure in rats.

Li BF, Guo GZ, Ren DQ, Zhang RB. · 2007

Researchers exposed rats to electromagnetic pulses (intense bursts of electromagnetic energy) and measured their blood pressure for four weeks afterward. The study found that these pulses caused immediate spikes in blood pressure, followed by drops below normal levels that lasted up to a month. This suggests that even brief electromagnetic exposures can trigger lasting changes in cardiovascular function.

Brain & Nervous SystemNo Effects Found135 citations

No short-term effects of digital mobile radio telephone on the awake human electroencephalogram

Roschke, J, Mann, K · 1997

German researchers exposed 34 healthy men to cell phone radiation (900 MHz) for 3.5 minutes while measuring their brain activity with EEG sensors. They found no detectable changes in brain wave patterns during the short exposure period compared to when the phone was turned off. This suggests that brief cell phone use may not immediately alter brain electrical activity in awake, healthy adults.

[Modulated extremely high frequency electromagnetic radiation of low intensity activates or inhibits respiratory burst in neutrophils depending on modulation frequency].

Gapeev AB, Lakushina VS, Chemeris NK, Fesenko EE · 1997

Russian researchers exposed mouse immune cells to extremely high frequency radiation (42 GHz) at low power for 20 minutes. Depending on how the radiation was pulsed, it either boosted or suppressed the cells' infection-fighting ability by 25%, showing weak electromagnetic fields can significantly alter immune function.

Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain

Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR · 2009

Researchers exposed rats to 900 MHz cell phone radiation for 2 hours daily over 10 months to study brain cell death (apoptosis) and oxidative stress. Surprisingly, they found reduced cell death and increased antioxidant activity in exposed rats compared to controls. This unexpected finding suggests the brain may activate protective mechanisms in response to chronic low-level radiation exposure.

Cancer & TumorsNo Effects Found

No effect of short-term exposure to GSM-modulated low-power microwaves on benzo(a)pyrene-induced tumours in rat.

Chagnaud, JL, Moreau, JM, Veyret, B · 1999

Researchers exposed rats with chemically-induced tumors to GSM cell phone radiation (900 MHz) for 2 hours daily over 2 weeks to see if the radiation would accelerate cancer development. The study found no effect - the microwave exposure neither sped up nor delayed tumor growth, and didn't affect animal survival rates. The exposure levels used were within current safety limits for human whole-body exposure.

Cellular phone electromagnetic field effects on bioelectric activity of human brain.

Lebedeva NN et al. · 2000

Russian researchers exposed 24 volunteers to cell phone radiation at 902.4 MHz for 15 minutes while measuring their brain activity using EEG. They found significant changes in brain electrical patterns during and after exposure, with the brain showing increased activation that persisted for 30 minutes after the phone was turned off. This demonstrates that cell phone radiation directly alters how the brain functions, even at relatively low power levels.

[Effect of millimeter waves on the early development of the mouse and sea urchin embryo].

Galat VV et al. · 1999

Russian researchers exposed mouse and sea urchin embryos to millimeter wave radiation (54-78 GHz) at very low power levels for 30 minutes during early development. They found that exposed mouse embryos developed faster and more successfully reached the blastocyst stage compared to unexposed controls. The radiation appeared to strengthen embryos against environmental stress, suggesting these frequencies may have biological effects even at non-thermal levels.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia.

Nittby H et al. · 2012

Swedish researchers exposed land snails to cell phone radiation at 1900 MHz (the same frequency used by many mobile phones) for one hour, then tested their response to painful heat. The radiation-exposed snails showed significantly reduced sensitivity to pain compared to unexposed snails, suggesting the electromagnetic fields had an anesthetic-like effect on their nervous systems.

Exposure limits for ultra-short wave radiation in work environments.

Zhao Z, Zhang S, Wang S, Yao Z, Zho H, Tao S, Tao L · 1994

Chinese researchers exposed rabbits to 100 MHz radio frequency radiation at different power levels and surveyed 136 factory workers exposed to similar radiation. They found thermal effects in rabbits at high exposures and neurological symptoms (neurosis) in workers exposed to low-level radiation at 0.2 mW/cm². The study established workplace exposure limits using safety factors to protect against these observed health effects.

Cancer & TumorsNo Effects Found

DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field.

Stagg RB, Thomas WJ, Jones RA, Adey WR · 1997

Researchers exposed brain cells (both normal and cancerous glioma cells) to cell phone-like radiofrequency radiation at 836.55 MHz for 24 hours to see if it would promote tumor growth by affecting DNA synthesis. While they found small increases in DNA activity in some cancer cell experiments, this didn't translate to actual increased cell growth or proliferation in either normal or cancerous cells.

Brain & Nervous SystemNo Effects Found

Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression.

Ivaschuk OI et al. · 1997

Researchers exposed rat nerve cells to cell phone radiation at 836.55 MHz (the frequency used by early digital cell phones) to see if it would affect the activity of genes called c-fos and c-jun, which help control cell growth and responses to stress. They found mostly no effects, except for a 38% decrease in c-jun gene activity at the highest exposure level of 9 mW/cm². This suggests that cell phone radiation may have subtle effects on nerve cell gene expression, but only at relatively high exposure levels.

The α-helix alignment of proteins in water solution toward a high-frequency electromagnetic field: A FTIR spectroscopy study.

Calabrò E, Magazù S. · 2017

Italian researchers exposed proteins (including hemoglobin and albumin) to mobile phone radiation at 1750 MHz for 4 hours and measured changes in their molecular structure. They found that the proteins' alpha-helix structures physically aligned themselves with the electromagnetic field, causing measurable changes in their chemical bonds. This demonstrates that cell phone-level radiation can directly alter the shape and orientation of essential biological molecules.

Modifying Effects of Low-Intensity Extremely High-Frequency Electromagnetic Radiation on Content and Composition of Fatty Acids in Thymus of Mice Exposed to X-Rays.

Gapeyev AB, Aripovsky AV, Kulagina TP. · 2014

Scientists exposed mice to 42.2 GHz electromagnetic radiation to test whether it could protect against X-ray damage to immune tissue. The electromagnetic exposure helped restore normal tissue chemistry and weight in the thymus gland, suggesting certain frequencies might aid immune system recovery from radiation injury.

Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

Gapeyev AB, Kulagina TP, Aripovsky AV. · 2013

Researchers exposed mice with cancer to extremely high-frequency electromagnetic radiation (42.2 GHz) for 20 minutes daily and found it changed the fatty acid composition in their tissues. The radiation appeared to restore normal fatty acid levels in immune system cells (thymocytes) and altered the fatty acid makeup within tumor tissue itself. This suggests EMF exposure might influence cancer progression by changing how cells process fats.

Effect of chronic exposure to a GSM-like signal (mobile phone) on survival of female Sprague-Dawley rats: Modulatory effects by month of birth and possibly stage of the solar cycle.

Bartsch H et al. · 2010

German researchers exposed female rats to cell phone radiation (900 MHz) throughout their lives. Exposed rats lived 9% shorter lives than unexposed rats - about 72-77 fewer days. The radiation levels matched typical cell phone exposure, suggesting chronic use might affect human lifespan.

DNA & Genetic DamageNo Effects Found

Cytogenetic effects of 18.0 and 16.5 GHz microwave radiation on human lymphocytes in vitro.

Hansteen IL et al. · 2009

Norwegian researchers exposed human immune cells (lymphocytes) to high-frequency microwave radiation at levels similar to industrial applications for 53 hours to test for DNA damage. They found no statistically significant genetic damage from either continuous 18.0 GHz or pulsed 16.5 GHz radiation, though the pulsed exposure showed a non-significant trend toward increased genetic abnormalities that the researchers said needs further study.

Brain & Nervous SystemNo Effects Found

Influence of a 902.4 MHz GSM signal on the human visual system: investigation of the discrimination threshold.

Irlenbusch L et al. · 2007

Researchers exposed 33 people to GSM mobile phone signals near their eyes to test whether radiofrequency radiation affects visual sensitivity (the ability to detect light differences). Using exposure levels similar to holding a phone close to your face, they found no measurable changes in visual discrimination abilities during 30-minute exposure sessions. This suggests that typical mobile phone use doesn't immediately impair basic visual function.

Brain & Nervous SystemNo Effects Found

Influence of a 902.4 MHz GSM signal on the human visual system: Investigation of the discrimination threshold

Irlenbusch L et al. · 2007

German researchers exposed 33 people to cell phone radiation at 902.4 MHz for 30 minutes to see if it affected their ability to detect light (visual discrimination threshold). They found no statistically significant changes in visual sensitivity between real exposure and fake exposure sessions. This suggests that brief GSM radiation exposure at typical power levels doesn't immediately impair basic visual function.