Kwon MS et al. · 2010
Researchers tested whether cell phone radiation affects children's ability to process sounds by measuring brain activity in 17 children aged 11-12 while they were exposed to 902 MHz signals from a GSM phone. The study found no significant changes in the brain's auditory processing or sound memory functions during short exposures (12 minutes total). However, the researchers noted their study could only detect large effects, meaning smaller impacts might have gone unnoticed.
Heinrich S, Thomas S, Heumann C, von Kries R, Radon K · 2010
German researchers used personal dosimeters to measure radiofrequency radiation exposure in nearly 3,000 children and adolescents over 24 hours, then tracked acute symptoms like headaches and concentration problems. While they found a few statistically significant associations between higher RF exposure and symptoms, the researchers concluded these were likely due to chance rather than actual health effects because the results weren't consistent and disappeared when analyzing the highest-exposed participants separately.
Vecchio F et al. · 2010
Italian researchers measured brain wave patterns in elderly and young adults while exposed to cell phone radiation for 45 minutes. They found that older adults showed significantly increased synchronization between the left and right brain hemispheres in the alpha frequency range (8-12 Hz) during phone exposure, while younger subjects showed minimal changes. This suggests that aging brains may be more vulnerable to electromagnetic field effects from mobile devices.
Thomas S, Heinrich S, von Kries R, Radon K. · 2010
Researchers measured actual radiofrequency radiation exposure in over 3,000 German children and teenagers using personal dosimeters for 24 hours, then assessed their behavior using standardized questionnaires. They found that adolescents with the highest RF exposure were 2.2 times more likely to have behavioral problems, while both children and adolescents showed nearly 3 times higher rates of conduct problems. This matters because it's one of the first studies to use objective exposure measurements rather than relying on self-reported phone use.
Heinrich S, Thomas S, Heumann C, von Kries R, Radon K. · 2010
German researchers used personal dosimeters to measure radiofrequency electromagnetic field exposure in nearly 3,000 children and adolescents over 24 hours, then tracked acute symptoms like headaches and concentration problems. They found a few statistically significant associations between higher RF exposure and symptoms, but these results were inconsistent and disappeared when analyzing the highest-exposed participants. The researchers concluded the observed effects likely occurred by chance rather than representing true causal relationships.
Croft RJ et al. · 2010
Researchers exposed 103 people across three age groups (teens, young adults, and elderly) to 2G and 3G cell phone signals while measuring their brain waves. They found that only young adults (ages 19-40) showed changes in their alpha brain waves when exposed to 2G signals, while teenagers and elderly participants showed no effects from either 2G or 3G exposure. This suggests that brain sensitivity to cell phone radiation varies significantly by age.
Christ A, Gosselin MC, Christopoulou M, Kühn S, Kuster N. · 2010
Researchers used MRI-based head models to compare how cell phone radiation is absorbed in children's brains versus adults' brains. They found that children absorb significantly more radiation in key brain regions like the cortex, hippocampus, and hypothalamus (over 3 dB higher), with bone marrow showing even greater increases (over 10 dB higher). This happens because children's smaller heads place these tissues closer to the phone, even though overall head absorption remains similar between age groups.
Vecchio F et al. · 2010
Researchers exposed 16 elderly and 5 young adults to GSM mobile phone emissions for 45 minutes while measuring their brain waves with EEG. They found that elderly subjects showed significantly increased synchronization between brain hemispheres in the alpha frequency range (8-12 Hz) during phone exposure, while young subjects showed less pronounced effects. This suggests that aging brains may be more susceptible to electromagnetic field interference from mobile phones.
Thomas S, Heinrich S, von Kries R, Radon K · 2010
German researchers studied over 3,000 children and teens, measuring their actual radiofrequency EMF exposure from cell towers and wireless networks over 24 hours using personal dosimeters. They found that adolescents with the highest RF exposure levels were more than twice as likely to show behavioral problems, particularly conduct issues like aggression or rule-breaking. The exposure levels were well below safety limits, suggesting behavioral effects may occur at everyday environmental levels.
Rağbetlı MC et al. · 2010
Researchers exposed pregnant mice to mobile phone radiation at levels similar to what humans experience (0.95 W/kg SAR) and found a significant decrease in Purkinje cells in the developing cerebellum of offspring. Purkinje cells are critical neurons that control movement, balance, and coordination. This study suggests that prenatal exposure to mobile phone radiation may affect brain development in areas responsible for motor function.
Grigoriev YG et al. · 2010
Russian researchers exposed rats to microwave radiation at levels similar to what cell phones emit (2450 MHz frequency) for 7 hours daily over 30 days. They found the radiation triggered immune system changes in brain tissue, causing the body to produce antibodies against its own brain cells. This suggests that even low-level microwave exposure may cause autoimmune reactions where the immune system mistakenly attacks healthy tissue.
Tayefi H et al. · 2010
Researchers exposed pregnant rats and their newborn pups to magnetic fields (3 mT) for 4 hours daily and examined the heart muscle tissue. They found significant damage including increased cell death, oxidative stress, and structural abnormalities in the heart muscle cells of exposed animals compared to unexposed controls. This suggests that electromagnetic field exposure during pregnancy and early development may harm heart tissue development.
Croft RJ et al. · 2010
Scientists tested how 2G and 3G cell phone signals affect brain waves in 103 people of different ages during 55-minute exposures. Only young adults showed brain wave changes from 2G signals, while teenagers and elderly showed no effects, suggesting age influences brain sensitivity to phone radiation.
Arendash GW et al. · 2010
Researchers exposed mice to cell phone radiation (918 MHz) for one hour daily over eight months. The exposure improved memory and reduced Alzheimer's-related brain plaques in both normal and Alzheimer's-prone mice, suggesting certain electromagnetic fields might benefit brain health.
Ammari M et al. · 2010
Researchers exposed rats to cell phone-level radiation (900 MHz) for 8 weeks and found increased levels of GFAP, a protein that indicates brain inflammation and damage to protective brain cells called astrocytes. The brain damage occurred at radiation levels similar to what people experience during cell phone use, and persisted for at least 10 days after exposure ended.
Abramson MJ et al. · 2009
Researchers studied 317 Australian teenagers to see if mobile phone use affected their thinking abilities. They found that teens who made more phone calls had faster but less accurate responses on cognitive tests, with poorer working memory and learning performance. Importantly, the same effects occurred with text messaging, suggesting the changes came from phone usage habits rather than radiofrequency radiation exposure.
Budak GG, Muluk NB, Budak B, Oztürk GG, Apan A, Seyhan N. · 2009
Researchers exposed infant rabbits to cell phone radiation (1800 MHz) both before birth (in the womb) and after birth, then measured their hearing function using specialized tests. They found that exposure after birth decreased hearing sensitivity at certain frequencies, while exposure before birth appeared to have a protective effect. The study suggests that developing ears may be particularly vulnerable to radiofrequency radiation from mobile phones.
Budak GG, Muluk NB, Budak B, Oztürk GG, Apan A, Seyhan N. · 2009
Researchers exposed infant and adult female rabbits to cell phone radiation (1800 MHz GSM) for 15 minutes daily over 7 days and measured their hearing function using distortion product otoacoustic emissions (DPOAE), which test how well the inner ear responds to sound. Adult rabbits showed significant hearing damage across most frequencies tested, while infant rabbits actually showed some improved responses at certain frequencies. This suggests that developing ears may be more resilient to radiofrequency damage than mature ones, possibly due to higher water content in young ear structures.
Abramson MJ et al. · 2009
Australian researchers tested cognitive function in 317 seventh-grade students and found that those who made more mobile phone calls performed differently on thinking tasks. Students with higher phone use showed faster but less accurate responses on complex cognitive tests, along with poorer working memory. However, since texting showed similar patterns, the researchers concluded these changes likely resulted from behavioral adaptations to frequent phone use rather than radiofrequency radiation exposure.
Soderqvist F, Carlberg M, Hardell L. · 2008
Swedish researchers surveyed 2,000 teenagers about their wireless phone use and health symptoms. They found that regular users of mobile and cordless phones reported more health problems including tiredness, headaches, anxiety, concentration difficulties, and sleep disturbances compared to less frequent users. Nearly all teens (99.6%) had access to mobile phones, with girls using them more frequently than boys.
Divan HA, Kheifets L, Obel C, Olsen J. · 2008
Danish researchers followed over 13,000 children from pregnancy through age 7 to study whether mothers' cell phone use during pregnancy and children's own phone use affected behavior. They found that children exposed to cell phones both before birth and after had 80% higher odds of behavioral problems like hyperactivity and emotional difficulties. While the researchers noted other factors could explain this connection, the findings raise concerns given how widely cell phones are used.
Andrzejak R et al. · 2008
Researchers monitored 32 healthy students' heart rhythms during 20-minute cell phone calls, measuring heart rate variability (how much your heart rate naturally fluctuates between beats). They found that phone calls significantly changed the participants' autonomic nervous system balance, increasing parasympathetic activity (the 'rest and digest' system) while decreasing sympathetic activity (the 'fight or flight' system). These changes returned to normal after the call ended, suggesting that cell phone radiation may directly affect the nervous system's control of heart function.
Divan HA, Kheifets L, Obel C, Olsen J · 2008
Danish researchers tracked 13,000 children from pregnancy through age 7, finding those exposed to cell phones both before and after birth had 80% higher odds of behavioral problems like hyperactivity. The findings raise public health concerns given widespread cell phone use.
Falone S et al. · 2008
Scientists exposed young and old rats to power-line magnetic fields for 10 days. Young rats strengthened their brain's protective systems, but older rats experienced weakened defenses against cellular damage. This suggests aging makes brains more vulnerable to magnetic field exposure from electrical devices.
Falone S et al. · 2008
Italian researchers exposed young and older rats to 50 Hz magnetic fields from power lines for 10 days. Young rats strengthened their brain's antioxidant defenses, but older rats experienced significant weakening of these protective systems, suggesting aging brains are more vulnerable to EMF damage.