3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Cell Phone Radiation Research

RF Radiation

Research on electromagnetic radiation from mobile phones, including 2G, 3G, 4G LTE, and 5G NR signals.

1,326
Studies
73%
Showed Bioeffects
1
EMF Type
700 MHz - 2.7 GHz
Frequency

Related Studies (1,326)

2.45GHz radiofrequency fields alter gene expression in cultured human cells.

Lee S et al. · 2005

Researchers exposed human immune cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for 2-6 hours and found it altered the activity of hundreds of genes. After just 2 hours, 221 genes changed their expression patterns, increasing to 759 genes after 6 hours. Importantly, genes related to cell death increased their activity while genes controlling normal cell division decreased, and this happened without any heating effects.

A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination.

Ozguner F, Oktem F, Ayata A, Koyu A, Yilmaz HR. · 2005

Researchers exposed rats to 900 MHz mobile phone radiation (the same frequency used by many cell phones) and found it caused significant kidney damage through oxidative stress - essentially, the radiation generated harmful molecules that damaged kidney tissue and reduced the kidneys' natural antioxidant defenses. When the researchers treated another group of rats with an antioxidant compound, it prevented most of this kidney damage, suggesting that cell phone radiation harms organs by overwhelming the body's ability to neutralize harmful free radicals.

DNA & Genetic DamageNo Effects Found

Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields.

Zeni O et al. · 2005

Italian researchers exposed human white blood cells to 900 MHz cell phone radiation for 2 hours at levels similar to what phones emit during calls. They tested multiple ways to detect DNA damage but found no statistically significant genetic harm at either exposure level tested. The study suggests that short-term exposure to cell phone radiation at typical use levels may not cause immediate DNA damage in blood cells.

Brain & Nervous SystemNo Effects Found

Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats.

Kuribayashi M et al. · 2005

Researchers exposed young and developing rats to cell phone-frequency radiation (1439 MHz) for 90 minutes daily to see if it damaged the blood-brain barrier, which protects the brain from harmful substances. Even at high exposure levels (up to 6 W/kg), they found no changes in barrier function or protective proteins after 1-2 weeks of exposure. This suggests that this type of radiofrequency radiation may not compromise the brain's natural protective barrier in young animals.

Comparative analysis of the protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on mobile phone-induced renal impairment in rat.

Ozguner F et al. · 2005

Turkish researchers exposed rats to 900 MHz mobile phone radiation and found it caused kidney damage by increasing harmful molecules and reducing protective antioxidants. However, when rats were pre-treated with melatonin or CAPE (a natural compound from propolis), both substances protected against this kidney damage, with melatonin showing stronger protective effects. This suggests that mobile phone radiation can harm kidney tissue through oxidative stress, but natural antioxidants may offer protection.

Cellular EffectsNo Effects Found

Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells.

Miyakoshi J et al. · 2005

Researchers exposed human brain tumor cells to 1950 MHz radiofrequency radiation (similar to 3G cell phone frequencies) at various intensities for up to 2 hours. While the radiation didn't affect cell growth or activate major stress response proteins, it did reduce a specific cellular protection mechanism at the highest exposure level (10 W/kg). This suggests that even when cells appear unaffected, subtle molecular changes may still be occurring.

Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.

Keshvari J, Lang S. · 2005

Researchers used computer models to compare how much radiofrequency energy is absorbed in children's heads versus adults' heads when exposed to cell phone frequencies. They found that differences in energy absorption depend more on individual head shape and anatomy rather than age itself. This challenges the common assumption that children automatically absorb more RF energy than adults.

Immune SystemNo Effects Found

Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes.

Lim HB, Cook GG, Barker AT, Coulton LA. · 2005

Researchers exposed human white blood cells to 900 MHz cell phone radiation at various power levels for up to 4 hours to see if it triggered a cellular stress response. The cells showed no signs of producing stress proteins (the body's natural defense against harmful conditions) after RF exposure, even though they did respond normally when heated to 42°C. This suggests that cell phone-type radiation at these levels doesn't cause detectable cellular stress in immune cells.

Brain & Nervous SystemNo Effects Found

Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation.

Cosquer B, Galani R, Kuster N, Cassel JC. · 2005

Researchers exposed rats to 2.45 GHz electromagnetic fields (the same frequency used in WiFi and microwave ovens) for 45 minutes and measured their anxiety levels using a standard behavioral test called the elevated plus-maze. The EMF exposure, at levels producing a specific absorption rate of 0.6-0.9 W/kg, did not change anxiety responses compared to unexposed control rats. This finding suggests that short-term exposure to this type of radiofrequency radiation does not affect anxiety-related behaviors in rats.

Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells

Lai H, Singh NP · 2005

Researchers exposed rats to microwave radiation at cell phone frequencies (2450 MHz) for 2 hours and found significant DNA damage in brain cells. However, when they simultaneously exposed the rats to a weak magnetic field with random fluctuations, it completely blocked the DNA damage from occurring. This suggests that certain types of magnetic field exposure might actually protect against microwave-induced genetic damage.

Interaction of Microwaves and a Temporally Incoherent Magnetic Field on Single and Double DNA Strand Breaks in Rat Brain Cells.

Lai H, Singh NP · 2005

Researchers exposed rats to cell phone-frequency microwaves (2450 MHz) for 2 hours and found significant DNA damage in brain cells. However, when they simultaneously exposed the rats to a weak magnetic field with random fluctuations, it completely blocked the DNA damage from occurring. This suggests that certain types of magnetic field exposure might actually protect against some forms of EMF damage.

Cancer & TumorsNo Effects Found

Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats

Shirai T et al. · 2005

Japanese researchers exposed rats to cell phone radiation (1.439 GHz) for 2 years to see if it would promote brain tumors in animals already given a cancer-causing chemical. The EMF exposure did not increase tumor rates or accelerate brain cancer development at either exposure level tested (0.67 or 2.0 W/kg SAR). This suggests that chronic cell phone radiation exposure may not promote brain tumor growth, at least under these specific experimental conditions.

Brain & Nervous SystemNo Effects Found

No influence on selected parameters of human visual perception of 1970 MHz UMTS-like exposure.

Schmid G, Sauter C, Stepansky R, Lobentanz IS, Zeitlhofer J · 2005

Researchers exposed 58 healthy adults to UMTS (3G) mobile phone signals at levels similar to actual phone use and tested whether this affected their visual perception through four different eye tests. They found no measurable differences in visual performance between exposure to the radio frequency signals and fake (sham) exposure. This suggests that 3G mobile phone radiation at typical usage levels does not impair basic visual processing abilities.

Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz.

Ebert S et al. · 2005

Researchers exposed mice to 905 MHz radiofrequency radiation at various power levels to determine when their bodies could no longer regulate temperature. They found that mice began struggling to maintain normal body temperature at radiation levels between 2-5 W/kg, and completely lost temperature control around 6-10 W/kg during 2-hour exposures.

Reliability of electromagnetic filters of cardiac pacemakers tested by cellular telephone ringing.

Trigano A, Blandeau O, Dale C, Wong MF, Wiart J. · 2005

French researchers tested whether cell phone signals could interfere with cardiac pacemakers by placing ringing phones directly on patients' chests during routine clinic visits. Out of 330 tests on 158 patients, interference occurred in only 5 cases (1.5%), and only with older pacemaker models that lacked electromagnetic filters. This demonstrates that modern pacemakers with protective filters are highly resistant to cell phone interference, even during the peak power phase of incoming calls.

Brain & Nervous SystemNo Effects Found

Effects of 900 MHz electromagnetic fields exposure on cochlear cells' functionality in rats: Evaluation of distortion product otoacoustic emissions.

Galloni P et al. · 2005

Researchers exposed rats to 900 MHz electromagnetic fields (the same frequency used by many cell phones) and measured their hearing function using specialized tests that detect the health of inner ear cells. The study found no significant changes in hearing function during or after EMF exposure. This suggests that cell phone radiation at 900 MHz may not directly damage the delicate hair cells in the cochlea that are essential for hearing.

Investigation of potential effects of cellular phones on human auditory function by means of distortion product otoacoustic emissions.

Janssen T, Boege P, von Mikusch-Buchberg J, Raczek J. · 2005

Researchers tested whether 900-MHz cell phone radiation affects inner ear hearing cells in 28 people. They found extremely small changes (less than 1 decibel) in some subjects, but concluded these tiny shifts are physiologically meaningless given humans' 120-decibel hearing range.

DNA & Genetic DamageNo Effects Found

Effects of 1-week and 6-week exposure to GSM/DCS radiofrequency radiation on micronucleus formation in B6C3F1 Mice.

Gorlitz BD et al. · 2005

Researchers exposed mice to cell phone radiation (GSM and DCS frequencies) for 2 hours daily over 1 and 6 weeks to test whether it causes DNA damage in blood cells and other tissues. They found no increase in micronuclei (tiny fragments that indicate genetic damage) in any of the cell types examined, even at radiation levels up to 33.2 mW/g. This suggests that cell phone-type radiation at these exposure levels does not cause detectable genetic damage in mice.

DNA & Genetic DamageNo Effects Found

Effect of high-frequency electromagnetic fields with a wide range of SARs on chromosomal aberrations in murine m5S cells.

Komatsubara Y et al. · 2005

Japanese researchers exposed mouse cells to 2.45 GHz microwave radiation (the same frequency used in microwave ovens and WiFi) for 2 hours at extremely high power levels up to 100 watts per kilogram. They found no chromosomal damage or genetic changes in the cells, even at these intense exposure levels that far exceed what humans typically experience from wireless devices.

Nitric oxide level in the nasal and sinus mucosa after exposure to electromagnetic field.

Yariktas M et al. · 2005

Researchers exposed rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for two weeks and measured nitric oxide levels in their nasal passages. They found that EMF exposure significantly increased nitric oxide production in the nose and sinus tissues, but giving the rats melatonin prevented this increase. This suggests that cell phone radiation may trigger inflammatory responses in nasal tissues.

Brain & Nervous SystemNo Effects Found

Electromagnetic Fields from mobile phones do not affect the inner auditory system of Sprague-Dawley Rats.

Galloni P et al. · 2005

Researchers exposed rats to cell phone radiation at 900 and 1800 MHz frequencies for 2 hours daily over 4 weeks to test if it damaged their inner ear function. Using sensitive hearing tests that measure the health of cochlear hair cells (the tiny structures that convert sound waves into nerve signals), they found no differences between exposed and unexposed animals. This suggests that typical cell phone radiation levels may not directly harm the delicate hearing mechanisms in the inner ear.

On the safety assessment of human exposure in the proximity of cellular communications base-station antennas at 900, 1800 and 2170 MHz

Martinez-Burdalo M, Martin A, Anguiano M, Villar R · 2005

Spanish researchers tested whether current safety guidelines adequately protect people near cell tower antennas at three common frequencies (900, 1800, and 2170 MHz). Using computer models of human bodies placed at various distances from antennas, they found that meeting field strength limits doesn't always guarantee that radiation absorption (SAR) stays within safety limits. This means people could be exposed to higher-than-intended radiation levels even when towers appear to comply with regulations.

Sleep & Circadian RhythmNo Effects Found

Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats.

Hata K et al. · 2005

Japanese researchers exposed 208 rats to cell phone-like radiation at 1439 MHz for 12 hours to see if it affected melatonin production (the hormone that regulates sleep). They found no changes in melatonin or serotonin levels even at radiation levels four times stronger than typical mobile phones. However, the authors noted that longer exposure studies are still needed to fully understand potential effects.

FAQs: Cell Phones EMF Research

Of 1,326 peer-reviewed studies examining cell phones electromagnetic radiation, 73% found measurable biological effects. These studies span decades of research conducted by scientists worldwide and include both laboratory experiments and epidemiological studies examining the health effects of cell phones radiation exposure.
The BioInitiative Report database includes 1,326 peer-reviewed studies specifically examining cell phones electromagnetic radiation and its potential health effects. These studies have been conducted by researchers worldwide and published in scientific journals. The research examines various biological endpoints including cellular effects, neurological impacts, reproductive health, and other health outcomes.
73% of the 1,326 studies examining cell phones electromagnetic radiation found measurable biological effects. This means that 968 studies documented observable changes when organisms were exposed to cell phones EMF. The remaining studies either found no significant effects or had inconclusive results.