Hardell L, Carlberg M, Söderqvist F, Mild KH. · 2013
Swedish researchers studied 593 people with malignant brain tumors and compared their cell phone and cordless phone use to healthy controls. They found that long-term users (15+ years) had roughly double the risk of developing brain tumors, with the highest risk (3.3 times higher) seen in people who used older analog phones for over 25 years. The risk was particularly elevated when people held phones on the same side of the head where tumors developed.
Hagström M, Auranen J, Ekman R. · 2013
Researchers surveyed 206 Finnish people who believe they suffer from electromagnetic hypersensitivity (EHS), a condition where individuals experience symptoms they attribute to EMF exposure from devices like computers and cell phones. The study found that 76% reported improvement when they reduced or avoided EMF exposure, with the most effective treatments being dietary changes, supplements, and exercise rather than conventional medical approaches. The findings suggest that people experiencing EHS symptoms may benefit more from EMF avoidance and lifestyle modifications than from standard psychiatric treatments.
Haghani M, Shabani M, Moazzami K. · 2013
Researchers exposed pregnant rats to 900-MHz mobile phone radiation for 6 hours daily throughout pregnancy and studied the brain development of their offspring. While the young rats showed no obvious behavioral problems, detailed electrical measurements revealed that specialized brain cells called Purkinje neurons (which help control movement and coordination) had altered electrical activity. This suggests that prenatal cell phone exposure can affect brain development at the cellular level, even when outward behavior appears normal.
Gao X, Luo R, Ma B, Wang H, Liu T, Zhang J, Lian Z, Cui X. · 2013
Researchers exposed pregnant rats to 900MHz cell phone radiation for three hours daily throughout pregnancy and found significant brain damage in both mothers and offspring, including swollen brain cells and reduced antioxidant defenses. However, when rats were given vitamin E supplements during pregnancy, the protective antioxidant largely prevented this brain damage. This suggests that EMF exposure during pregnancy can harm developing brains, but certain nutrients may offer protection.
Ersan Odacı et al. · 2013
Researchers exposed pregnant rats to 900 MHz radiofrequency radiation (similar to cell phone frequencies) for one hour daily during late pregnancy, then examined the spinal cord development and motor behavior of their female offspring. The exposed rat pups showed pathological changes in their spinal cord tissue and unexpectedly increased motor activity on behavioral tests. This suggests that prenatal EMF exposure can alter nervous system development in ways that persist after birth.
de Vocht F, Hannam K, Buchan I. · 2013
Researchers analyzed cancer data from 165 countries to explore potential environmental risk factors for brain and nervous system cancers. They found that countries with higher rates of mobile phone subscriptions consistently showed higher rates of brain cancer, with the data suggesting a latency period (time between exposure and disease) of at least 11-12 years, possibly over 20 years. While this type of population-level analysis cannot prove causation, it provides important signals that warrant further investigation into the relationship between wireless technology and brain cancer.
Carlberg M, Söderqvist F, Hansson Mild K, Hardell L. · 2013
Swedish researchers studied 709 people with meningiomas (brain tumors that grow on the protective membranes around the brain) to see if mobile and cordless phone use increased their risk. While overall phone use showed no clear link to these tumors, people with the highest usage (over 2,376 hours total) did show some increased risk. The authors concluded there wasn't enough evidence to prove phones cause meningiomas, but noted that longer-term studies are needed.
Cammaerts MC, Rachidi Z, Bellens F, De Doncker P. · 2013
Researchers studied how electromagnetic radiation affects ant colonies' ability to communicate and gather food using chemical signals called pheromones. They found that exposed ants could no longer follow scent trails, locate marked food areas, or respond to alarm signals, causing their colonies to deteriorate after just 180 hours of exposure. This suggests electromagnetic fields can disrupt the complex chemical communication systems that social insects depend on for survival.
Byun YH et al. · 2013
Researchers followed 2,422 Korean children for two years to study whether mobile phone use affects ADHD symptoms. They found that children who used mobile phones for voice calls showed increased ADHD symptoms, but only when they also had high levels of lead in their blood. This suggests that exposure to both lead and phone radiation together may worsen attention problems in children.
Benson VS et al. · 2013
British researchers followed nearly 800,000 middle-aged women for 7 years to see if mobile phone use increased their risk of brain tumors and other cancers. They found no increased risk for most brain tumors, including the most common types (glioma and meningioma), but did find that women who used phones for 10+ years had more than double the risk of developing acoustic neuroma, a rare tumor of the hearing nerve. This large study provides mixed evidence about mobile phone safety, with reassurance for most brain cancers but concern for one specific type.
Behari J, Nirala JP. · 2013
Researchers tested how 3G mobile phone radiation (1718.5 MHz) affects brain tissue using a laboratory phantom (artificial brain material) designed to mimic a small rat brain. They found that the amount of radiation absorbed (called SAR) varied significantly depending on the phone's angle and position, with some measurements showing higher absorption than expected. The study reveals important flaws in how we currently measure radiation exposure from mobile devices.
Podda MV et al. · 2013
Italian researchers exposed mice to extremely low frequency electromagnetic fields (like those from power lines) for 3.5 hours daily over 6 days and found it helped new brain cells survive in the hippocampus, a region critical for learning and memory. The mice showed improved spatial learning abilities, and laboratory tests revealed the EMF exposure reduced cell death signals while boosting cell survival proteins. This suggests certain EMF exposures might actually support brain health rather than harm it.
Maestú C et al. · 2013
Spanish researchers tested whether very low-intensity 8 Hz magnetic fields could help women with fibromyalgia, a chronic pain condition. After eight weekly sessions, patients receiving real magnetic stimulation showed significant improvements in pain thresholds, daily functioning, chronic pain levels, and sleep quality compared to those receiving fake treatment. The benefits appeared quickly for pain relief but took six weeks to develop for other symptoms, suggesting magnetic fields may offer a safe treatment option for fibromyalgia patients.
Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW. · 2013
Korean researchers exposed bone marrow stem cells to 50-Hz electromagnetic fields (the same frequency used in power lines) and found the fields triggered these cells to transform into nerve cells instead of continuing to multiply. The electromagnetic exposure increased calcium levels inside the cells and activated specific proteins involved in nerve development. This suggests extremely low-frequency EMFs might have therapeutic potential for treating neurodegenerative diseases by promoting the growth of new neurons.
Eser O et al. · 2013
Turkish researchers exposed rats to radiofrequency radiation at cell phone frequencies (900, 1800, and 2450 MHz) for one hour daily over two months. They found severe brain damage including cell death and shrunken brain tissue in key areas like the frontal cortex and brain stem, along with increased oxidative stress and inflammation. This demonstrates that chronic RF exposure can cause structural brain damage even at relatively low daily exposure levels.
Tasset I et al. · 2013
Researchers studied rats with a Huntington's disease-like condition and found that transcranial magnetic stimulation (TMS) activated protective cellular pathways that help defend against brain damage. Specifically, TMS increased levels of Nrf2, a protein that triggers the body's antioxidant defense system. This suggests that certain types of electromagnetic field exposure might actually help protect brain cells from damage in neurodegenerative diseases.
Podda MV et al. · 2013
Researchers exposed mice to extremely low frequency electromagnetic fields (the type emitted by power lines and household appliances) for 3.5 hours daily over six days. They found that this exposure actually helped new brain cells survive in the hippocampus, the brain region crucial for learning and memory. The mice also showed improved spatial learning abilities, suggesting these electromagnetic fields might have protective effects on brain function.
Maestú C et al. · 2013
Spanish researchers tested whether very low-intensity magnetic field stimulation could help women with fibromyalgia, a chronic pain condition. After eight weekly sessions of 8 Hz pulsed magnetic fields, patients showed significant improvements in pain thresholds, daily functioning, sleep quality, and overall pain levels compared to those receiving fake treatment. The improvements began after just one session for pain relief, with other benefits appearing after six weeks of treatment.
Maaroufi K et al. · 2013
French researchers exposed rats to cell phone radiation (900 MHz) for one hour daily over three weeks and tested their cognitive abilities using various learning tasks. The rats showed impaired performance on exploratory tasks and changes in brain chemicals, particularly in the hippocampus region crucial for memory. This suggests that even moderate exposure to cell phone radiation can affect brain function and cognitive performance.
Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW. · 2013
Researchers exposed bone marrow stem cells to 50 Hz electromagnetic fields (power line frequency) and found the fields accelerated transformation into nerve cells while slowing cell division. This suggests power frequency EMFs might influence how our bodies generate neurons, potentially affecting neurological health.
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. · 2013
Researchers exposed newborn rat brain cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for just 10 minutes and found significant neuronal damage. The radiation triggered a harmful cellular pathway that led to decreased cell survival, increased cell death, and abnormal protein changes associated with neurodegeneration. This suggests that even brief RF exposure can activate damaging processes in developing brain cells.
Tombini M et al. · 2013
Researchers exposed 10 epilepsy patients to mobile phone radiation for 45 minutes and measured brain activity. Phone radiation increased brain excitability only when positioned opposite to patients' seizure-prone brain areas, suggesting mobile phones can uniquely affect brain function in epilepsy patients.
Sudan M, Kheifets L, Arah OA, Olsen J. · 2013
Danish researchers followed over 52,000 children from birth to age 7, tracking their cell phone use and hearing ability. They found children who used cell phones had a 21-23% higher risk of hearing loss compared to non-users. This is the first large-scale study to examine whether cell phone radiation might affect children's hearing, though the researchers noted the findings need confirmation from other studies.
Eser O et al. · 2013
Researchers exposed rats to cell phone radiation frequencies for one hour daily over two months. The study found severe brain cell damage, increased harmful stress chemicals, and inflammation in multiple brain regions, demonstrating that prolonged mobile device frequency exposure can damage brain tissue.
Redmayne M, Smith E, and Abramson MJ · 2013
New Zealand researchers studied 400 teenagers' wireless phone use and health symptoms. Students making over 6 calls weekly had 2.4 times higher headache risk, while wireless headset users showed doubled depression and sleep problems. These findings suggest teen phone habits may impact wellbeing.