3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,644 studies in Brain & Nervous System

Mobile phone induced sensorineural hearing loss.

Al-Dousary SH. · 2007

Researchers documented a case of sensorineural hearing loss (nerve damage causing hearing problems) in a 42-year-old man who used a GSM mobile phone. This type of hearing loss affects the inner ear or auditory nerve pathways to the brain, making it different from hearing damage caused by loud noises. The case suggests that radiofrequency radiation from mobile phones may contribute to hearing problems beyond just the thermal effects we typically consider.

Neurobehavioral effects among inhabitants around mobile phone base stations.

Abdel-Rassoul G et al. · 2007

Researchers studied 85 people living near Egypt's first cell tower and compared them to 80 people living farther away. Those living near the tower experienced significantly higher rates of headaches, memory problems, dizziness, depression, and sleep issues, plus showed measurable declines in attention and memory tests. This occurred even though radiation levels were below government safety standards.

Mobile phone 'talk-mode' signal delays EEG-determined sleep onset.

Hung CS, Anderson C, Horne JA, McEvoy P. · 2007

Researchers exposed 10 healthy young adults to a GSM mobile phone in 'talk mode' for 30 minutes during the day, then measured how long it took them to fall asleep afterward. They found that exposure to the phone's talk-mode signal significantly delayed the onset of sleep compared to when the phone was off or in other modes. The study suggests that the specific radio frequency patterns used during phone calls may interfere with the brain's natural transition to sleep.

A method for detecting the effect of magnetic field on activity changes of neuronal populations of Morimus funereus (coleoptera, cerambycidae)

Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdzić D. · 2007

Researchers exposed endangered beetles to a weak magnetic field (2 mT) for just 5 minutes and measured changes in their brain neuron activity. The magnetic field altered brain activity in all 8 beetles tested, with most effects being permanent rather than temporary. This demonstrates that even brief exposure to relatively weak magnetic fields can cause lasting changes to nervous system function.

Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes

Zhao TY, Zou SP, Knapp PE. · 2007

Researchers exposed brain cells (neurons and astrocytes) from cell cultures to radiation from a 1900 MHz cell phone for just 2 hours. They found that this exposure activated genes that trigger cell death, with brain neurons being more sensitive than support cells. The concerning part is that these cellular death pathways were triggered even when the phone was in standby mode, not just during active calls.

Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms

Vecchio F et al. · 2007

Researchers exposed 10 people to mobile phone radiation for 45 minutes and measured their brain waves using EEG. They found that the radiation altered how the left and right sides of the brain communicate with each other, specifically affecting alpha brain wave patterns. This suggests that cell phone emissions can change the way different brain regions coordinate their activity.

Effect of whole-body exposure to high-frequency electromagnetic field on the brain cortical and hippocampal activity in mouse experimental model

Barcal J, Vozeh F · 2007

Researchers exposed mice to 900 MHz electromagnetic radiation (the same frequency used by cell phones) and directly measured brain activity in two key regions: the cortex and hippocampus. They found that this radiation altered normal brain wave patterns, shifting cortical activity to lower frequencies while increasing higher frequencies in the hippocampus. These changes occurred even though the mice received lower radiation doses than humans typically get when using cell phones.

Neurobehavioral effects among inhabitants around mobile phone base stations

Abdel-Rassoul G et al. · 2007

Researchers studied 85 people living near Egypt's first mobile phone base station and compared them to 80 people living farther away. Those living closest to the tower showed significantly higher rates of headaches (23.5% vs 10%), memory problems (28.2% vs 5%), dizziness, depression, and sleep disturbances, plus measurable changes in cognitive test performance. This suggests that even low-level radiofrequency radiation from cell towers may affect brain function and neurological health.

Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons

Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007

Researchers exposed developing rat brain cells (hippocampal neurons) to cell phone radiation at 1800 MHz for 15 minutes daily over 8 days. At the higher exposure level (2.4 W/kg), the radiation significantly disrupted normal brain cell development, reducing the formation of dendrites (the branch-like structures neurons use to communicate) and synapses (connection points between neurons). This suggests cell phone radiation during critical developmental periods could interfere with normal brain formation.

Oxidative Stress215 citations

Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs.

Meral I et al. · 2007

Researchers exposed guinea pigs to cell phone radiation (900 MHz) for 12 hours daily over 30 days and found significant oxidative stress in brain tissue. The radiation increased harmful compounds called free radicals while depleting the brain's natural antioxidant defenses. This suggests that prolonged cell phone exposure may damage brain cells through oxidative stress, the same process linked to aging and neurodegenerative diseases.

Effect of an acute 900MHz GSM exposure on glia in the rat brain: A time-dependent study.

Brillaud E, Piotrowski A, de Seze R. · 2007

French researchers exposed rats to cell phone radiation (900MHz GSM signal) for just 15 minutes and then examined their brains over the following 10 days. They found significant increases in glial cell activity (brain cells that support and protect neurons) in multiple brain regions, peaking 2-3 days after exposure. This glial response indicates the brain was reacting to the radiation exposure as if responding to injury or stress.

Adaptation of human brain bioelectrical activity to low-level microwave.

Bachmann M et al. · 2007

Researchers exposed 14 healthy volunteers to low-level microwave radiation (450 MHz) and measured their brain activity using EEG. They found that the brain initially responded to the radiation by increasing electrical activity, but then adapted by reducing activity below normal levels. This adaptation occurred specifically in alpha and beta brain waves, which are associated with alertness and cognitive function.

A method for detecting the effect of magnetic field on activity changes of neuronal populations of Morimus funereus (Coleoptera, Cerambycidae).

Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdzić D. · 2007

Researchers exposed endangered longhorn beetles to weak magnetic fields (2 milliTesla) for five minutes and monitored their brain nerve activity. The magnetic field caused permanent changes to nerve cell activity in 7 out of 8 beetles tested, with some neurons becoming more active and others less active. This demonstrates that even brief exposure to relatively weak magnetic fields can cause lasting changes to nervous system function in living organisms.

Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons.

Shen JF, Chao YL, Du L. · 2007

Researchers exposed rat nerve cells from the trigeminal ganglion (which controls facial sensation) to static magnetic fields at 125 millitesla and measured how this affected potassium channels that help control nerve cell activity. They found that the magnetic field altered how these channels turned off (inactivated), potentially disrupting normal nerve function. This suggests that moderate-strength magnetic fields can physically deform cell membranes and change how critical ion channels operate.

Fifty Hertz electromagnetic field exposure stimulates secretion of beta-amyloid peptide in cultured human neuroglioma.

Del Giudice E et al. · 2007

Italian researchers exposed human brain cells to 50 Hz electromagnetic fields from power lines and found significantly increased production of beta-amyloid proteins, the toxic clumps linked to Alzheimer's disease. This laboratory finding suggests a potential biological mechanism connecting household electricity exposure to Alzheimer's risk.

Effects of exposure to 50 Hz magnetic field of 1 mT on the performance of detour learning task by chicks.

Che Y, Sun H, Cui Y, Zhou D, Ma Y. · 2007

Researchers exposed young chicks to magnetic fields from power lines for 20 hours daily and tested their learning ability. Chicks with prolonged exposure showed significantly impaired learning and memory compared to unexposed chicks, suggesting extended magnetic field exposure may interfere with brain development.

Nonlinear EEG activation evoked by low-strength low-frequency magnetic fields.

Carrubba S, Frilot C, Chesson AL, Marino AA. · 2007

Researchers exposed eight people to weak 60 Hz magnetic fields (1 gauss) for 2 seconds and measured their brain activity using specialized electrodes. They discovered that human brains can detect these low-level magnetic fields and respond in complex, nonlinear ways that standard testing methods miss. This suggests humans may have an evolutionary magnetic sensing ability that makes us vulnerable to artificial electromagnetic fields in our environment.

Affective response to 5 microT ELF magnetic field-induced physiological changes.

Stevens P · 2007

Researchers exposed people to extremely low frequency magnetic fields at 5 microTesla (similar to standing near some household appliances) pulsing at brain wave frequencies of 8-12 Hz. Participants reported changes in their emotional state during exposure, and brain measurements showed altered electrical activity patterns. This suggests that even relatively weak magnetic fields can influence both how people feel and measurable brain function.

Exposure to extremely low frequency magnetic fields enhances locomotor activity via activation of dopamine D1-like receptors in mice.

Shin EJ et al. · 2007

Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) for one hour daily and found it significantly increased their movement and activity levels. The magnetic field exposure activated specific dopamine receptors in the brain (D1-like receptors), which are involved in movement control and reward pathways. This suggests that ELF magnetic fields can directly alter brain chemistry and behavior through changes in the dopamine system.

Browse by Health Effect