3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Topics

Cellular Effects

4 min read
Share:
Key Finding: 83% of 1,453 studies on cellular effects found biological effects from EMF exposure.

Of 1,453 studies examining cellular effects, 83% found measurable biological effects from EMF exposure.

Lowest Documented Effect

Research found effects on cellular effects at exposures as low as:

Study Exposure Level in ContextA logarithmic scale showing exposure levels relative to Building Biology concern thresholds and regulatory limits.Study Exposure Level in Context0.00000000000000009999999999999998558 - 3Extreme Concern1,000 uW/m2FCC Limit10M uW/m2Effects observed in the No Concern range (Building Biology)FCC limit is 100,000,000,000,000,010,000,000x higher than this exposure level

Research Overview

  • -When 81.4% of 269 peer-reviewed studies document cellular effects from electromagnetic field exposure, we're looking at one of the most robust areas of EMF research.
  • -The science demonstrates that our cells respond to EMF exposure in measurable, biological ways that extend far beyond simple heating effects.
  • -These documented cellular effects span a remarkable range of biological processes.

When 81.4% of 269 peer-reviewed studies document cellular effects from electromagnetic field exposure, we're looking at one of the most robust areas of EMF research. The science demonstrates that our cells respond to EMF exposure in measurable, biological ways that extend far beyond simple heating effects. These documented cellular effects span a remarkable range of biological processes.

When we examine the research on cellular effects, we find that 66% of studies published after 2007 show measurable changes in how your cells make and fold proteins when exposed to EMF levels typical of everyday wireless devices.

Research shows that 66% of studies published after 2007 report measurable effects on protein and gene expression at intensity levels commonly used by wireless devices, indicating a clear biological response to EMF exposure at current regulatory limits.

Source: BioInitiative Working Group. BioInitiative Report: A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Radiation. Edited by Cindy Sage and David O. Carpenter, BioInitiative, 2012, updated 2020. www.bioinitiative.org

Showing 1,453 studies

DNA & Genetic DamageNo Effects Found

Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro.

Manti L et al. · 2008

Italian researchers exposed human blood cells to cell phone radiation (1.95 GHz UMTS signal) for 24 hours, then hit them with X-rays to see if the RF exposure made the radiation damage worse. While the cell phone signals didn't increase the number of damaged cells, they did cause a small but measurable increase in the severity of chromosome damage within each affected cell at the higher exposure level (2.0 W/kg SAR). This suggests RF radiation might interfere with the cell's ability to repair DNA damage from other sources.

Whole Body / GeneralNo Effects Found

Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus).

Lerchl A et al. · 2008

German researchers exposed hamsters to cell phone radiation 24 hours a day for 60 days at levels matching the maximum allowed for humans. While melatonin levels (the sleep hormone) remained unchanged, hamsters exposed to certain frequencies gained up to 6% more body weight than unexposed animals, suggesting the radiation may affect metabolism even at supposedly safe levels.

Cellular EffectsNo Effects Found

Acute radio frequency irradiation does not affect cell cycle, cellular migration, and invasion.

Lee JJ et al. · 2008

Researchers exposed mouse cells to cell phone-level radiofrequency radiation (849 MHz) at power levels of 2 or 10 watts per kilogram for up to three days and measured whether this affected cell division, movement, or invasion capabilities. They found no statistically significant changes in any of these cellular functions compared to unexposed cells. This suggests that short-term RF exposure at these power levels does not disrupt basic cellular processes related to growth and migration.

Brain & Nervous SystemNo Effects Found

Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain.

Kim TH et al. · 2008

Researchers exposed mice to cell phone radiation at 849 MHz and 1763 MHz frequencies for up to 12 months, using radiation levels about 4 times higher than current safety limits. They found no changes in brain cell death, cell growth, or tissue damage compared to unexposed mice. This suggests that chronic exposure to these specific frequencies at high levels may not cause detectable brain tissue changes in mice.

Brain & Nervous SystemNo Effects Found

Characterization of biological effect of 1763 MHz radiofrequency exposure on auditory hair cells.

Huang TQ et al. · 2008

Researchers exposed mouse auditory hair cells (the cells responsible for hearing) to cell phone radiation at 1763 MHz for up to 48 hours at extremely high power levels - 10 times stronger than typical phone use. They found no DNA damage, no changes in cell cycles, no stress responses, and only 29 out of 32,000 genes showed any change. The study suggests that even at these high exposure levels, cell phone radiation doesn't cause measurable biological damage to the specialized cells in our ears.

Immune SystemNo Effects Found

Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation.

Huang TQ, Lee MS, Oh E, Zhang BT, Seo JS, Park WY. · 2008

Researchers exposed immune system T-cells to cell phone radiation at 1763 MHz for 24 hours to see if it caused cellular damage or changes in gene activity. They found no significant effects on cell growth, DNA damage, or major gene expression changes, though two immune-related genes showed minor decreases. This suggests that 24-hour exposure to this specific frequency at high power levels did not cause detectable harm to these immune cells.

Cancer & TumorsNo Effects Found

Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

Hirose H et al. · 2008

Researchers exposed mouse cells to radiofrequency radiation from mobile phone base stations for six weeks to see if it would cause cancerous changes. Even at high exposure levels (800 mW/kg), the radiation did not increase the rate of cell transformation into cancer cells. This suggests that base station radiation at these levels doesn't directly promote tumor formation in laboratory conditions.

Reproductive HealthNo Effects Found

HSP70 expression in human trophoblast cells exposed to different 1.8 Ghz mobile phone signals.

Franzellitti S, Valbonesi P, Contin A, Biondi C, Fabbri E. · 2008

Researchers exposed human placental cells to 1.8 GHz mobile phone radiation for up to 24 hours to study stress protein responses. While the cells showed no changes in stress proteins at the protein level, they found subtle changes in genetic activity (mRNA) that varied depending on the type of signal modulation used. This suggests that cellular responses to RF radiation may be more complex and nuanced than previously detected.

Reproductive HealthNo Effects Found

In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa.

Falzone N et al. · 2008

Researchers exposed human sperm samples to cell phone radiation at two different intensities to see if it affected sperm health and movement. They found no effects at the lower intensity (similar to normal phone use), but at the higher intensity, sperm swimming patterns became impaired over time. This suggests that stronger EMF exposures may harm male fertility, though typical phone use levels showed no immediate damage.

Reproductive HealthNo Effects Found

Mobile phone exposure does not induce apoptosis on spermatogenesis in rats.

Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Yegin D. · 2008

Researchers exposed male rats to 900 MHz cell phone radiation for 2 hours daily over 10 months to see if it would trigger cell death (apoptosis) in sperm-producing cells. They found no significant increase in cell death markers in the testes of exposed rats compared to unexposed controls. This suggests that this level of cell phone radiation exposure may not directly damage sperm production through cell death pathways.

Cellular EffectsNo Effects Found

Whole-body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein.

Yilmaz F, Dasdag S, Akdag MZ, Kilinc N · 2008

Turkish researchers exposed rats to radiation from 900 MHz cell phones for 20 minutes daily over one month to see if it affected bcl-2, a protein that helps prevent cell death in the brain and reproductive organs. They found no changes in bcl-2 levels in either brain or testicular tissue. This suggests that at least for this specific protein marker, short-term cell phone radiation exposure may not trigger cellular death pathways in these organs.

Brain & Nervous SystemNo Effects Found

Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain

Kim TH et al. · 2008

Researchers exposed mice to cell phone radiation at 849 MHz and 1763 MHz frequencies for up to 12 months, delivering radiation directly to their heads at levels much higher than typical phone use. They found no evidence of brain cell death, abnormal cell growth, or other cellular changes in the exposed animals compared to unexposed controls.

Upregulation of specific mRNA levels in rat brain after cell phone exposure.

Yan JG, Agresti M, Zhang LL, Yan Y, Matloub HS. · 2008

Researchers exposed rats to cell phone radiation for 6 hours daily over 18 weeks and found significant increases in brain proteins associated with injury and cellular stress. The study measured mRNA (genetic instructions for protein production) levels of four key proteins involved in brain cell damage and repair. These findings suggest that chronic cell phone exposure may cause cumulative brain injuries that could eventually lead to neurological problems.

Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations.

Yadav AS, Sharma MK. · 2008

Researchers examined cells from the inside of the mouth in 85 regular cell phone users compared to 24 non-users to look for signs of genetic damage. They found that cell phone users had significantly more micronuclei (small fragments that break off from damaged cell nuclei) - nearly three times more than non-users. The longer people had been using phones, the more genetic damage markers appeared in their cells.

A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field

Roux D et al. · 2008

French researchers exposed tomato plants to 900 MHz radiofrequency radiation (similar to cell phone frequencies) and found that it rapidly disrupted the plants' cellular energy systems. Within just 30 minutes, the plants' ATP levels (their main energy currency) dropped by 27%, and their overall energy status declined by 18%. This suggests that even low-level EMF exposure can interfere with fundamental cellular processes that keep living organisms functioning properly.

Microwave irradiation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway.

Inoue S, Motoda H, Koike Y, Kawamura K, Hiragami F, Kano Y. · 2008

Researchers exposed rat nerve cells (PC12m3) to 2.45 GHz microwave radiation at 200 watts and found it triggered a 10-fold increase in nerve fiber growth compared to unexposed cells. The microwaves activated specific cellular pathways (p38 MAPK) that promote nerve development, and importantly, this effect occurred without causing cell death or damage. This suggests microwave radiation can directly influence nerve cell behavior through non-thermal biological mechanisms.

Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding.

George DF, Bilek MM, McKenzie DR. · 2008

Researchers exposed proteins to 2,450 MHz microwave radiation (the same frequency used in microwave ovens and WiFi) and compared the results to regular heat exposure at the same temperature. They found that microwave radiation caused significantly more protein damage and unfolding than conventional heating, even when both reached identical final temperatures. This suggests that microwaves affect biological molecules through mechanisms beyond simple heating.

Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach.

Engelmann JC et al. · 2008

Researchers exposed plant cells to radio frequency radiation similar to what exists in urban environments with cell towers for 24 hours, then examined changes in gene activity across the entire plant genome. They found that 10 genes showed statistically significant changes in expression, though the changes were relatively small (less than 2.5-fold). The researchers concluded these minor genetic changes would likely have no meaningful impact on actual plant growth or reproduction.

Effects of electromagnetic radiation use on oxidant/antioxidant status and dna turn-over enzyme activities in erythrocytes and heart, kidney, liver, and ovary tissues from rats: possible protective role of Vitamin C.

Devrim E et al. · 2008

Researchers exposed female rats to 900 MHz electromagnetic radiation (the frequency used by cell phones) for 4 weeks and measured markers of cellular damage in their blood and organs. They found significant oxidative stress - essentially cellular damage from harmful molecules called free radicals - in the blood cells and kidneys of exposed rats. When some rats were given vitamin C along with the radiation exposure, it provided partial protection against this cellular damage.

Effects of exposing chicken eggs to a cell phone in "call" position over the entire incubation period.

Batellier F, Couty I, Picard D, Brillard JP. · 2008

French researchers exposed chicken eggs to cell phones making calls every 3 minutes throughout the entire 21-day incubation period to study developmental effects. They found significantly higher embryo death rates in eggs exposed to active cell phones compared to eggs near inactive phones, with most deaths occurring between days 9-12 of development. This suggests that radiofrequency radiation from cell phones can disrupt normal embryonic development during critical growth periods.

Reproductive Health526 citations

Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study.

Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. · 2008

Researchers studied 361 men at an infertility clinic and found that cell phone use was linked to declining sperm quality. Men who used phones more than 4 hours daily had significantly worse sperm count, movement, survival, and normal shape compared to non-users. This suggests that the radiofrequency radiation from cell phones may be contributing to male fertility problems.

Combinative exposure effect of radio frequency signals from CDMA mobile phones and aphidicolin on DNA integrity.

Tiwari R et al. · 2008

Researchers exposed blood samples from six healthy men to radio frequency signals from CDMA mobile phones for one hour, then tested for DNA damage using a technique called the comet assay. They found that while RF exposure alone didn't cause significant DNA damage, it did enhance DNA breaks when combined with a chemical that interferes with DNA repair. This suggests that mobile phone radiation may cause DNA damage that cells can normally repair, but problems could arise when repair mechanisms are compromised.

In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test.

Kim JY et al. · 2008

Korean researchers exposed mammalian cells to 835-MHz radiofrequency radiation (the frequency used in Korean CDMA cell phones) to test whether it causes genetic damage. While the radiation alone didn't directly damage DNA or chromosomes, it amplified the genetic damage when cells were also exposed to known cancer-causing chemicals. The researchers concluded they couldn't rule out increased genetic damage risk from this cell phone frequency.

Effects of Electromagnetic Radiation Use on Oxidant/Antioxidant Status and DNA Turn-over Enzyme Activities in Erythrocytes and Heart, Kidney, Liver, and Ovary Tissues From Rats: Possible Protective Role of Vitamin C

Devrim E et al. · 2008

Researchers exposed female rats to 900 MHz electromagnetic radiation (the frequency used by cell phones) for four weeks and measured oxidative stress markers in blood cells and organs. The EMF exposure increased oxidative stress and tissue damage in red blood cells and kidneys, while vitamin C provided some protection against these effects. This suggests that cell phone radiation may cause cellular damage through oxidative stress pathways.

ELF magnetic therapy and oxidative balance.

Raggi F, Vallesi G, Rufini S, Gizzi S, Ercolani E, Rossi R · 2008

Researchers studied whether magnetic field therapy could reduce cellular damage in 32 healthy people. After treatment, participants showed a 53.8% reduction in oxidative stress markers, with benefits lasting one month. This suggests certain magnetic exposures may protect rather than harm cells.

Learn More

For a comprehensive exploration of EMF health effects including cellular effects, along with practical protection strategies, explore these books by R Blank and Dr. Martin Blank.

FAQs: EMF & Cellular Effects

When 81.4% of 269 peer-reviewed studies document cellular effects from electromagnetic field exposure, we're looking at one of the most robust areas of EMF research. The science demonstrates that our cells respond to EMF exposure in measurable, biological ways that extend far beyond simple heating effects. These documented cellular effects span a remarkable range of biological processes.
The BioInitiative Report database includes 1,453 peer-reviewed studies examining the relationship between electromagnetic field exposure and cellular effects. These studies have been conducted by researchers worldwide and published in scientific journals. The research spans multiple decades and includes various types of EMF sources including cell phones, WiFi, power lines, and other common sources of electromagnetic radiation.
83% of the 1,453 studies examining cellular effects found measurable biological effects from EMF exposure. This means that 1201 studies documented observable changes in biological systems when exposed to electromagnetic fields. The remaining 17% either found no significant effects or had inconclusive results, which is typical in scientific research where study design and exposure parameters vary.