3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

5G vs 4G Radiation: What's Different?

Based on 653 peer-reviewed studies

Share:

People often ask whether 5G is more dangerous than 4G. This question requires understanding how 5G technology differs from previous generations and what research exists on each.

5G networks operate across multiple frequency bands. Low-band 5G (600-900 MHz) is actually similar to 4G frequencies. Mid-band 5G (2.5-4 GHz) overlaps with existing WiFi. High-band 5G (24-40+ GHz, "millimeter wave") represents the newest frequencies for consumer wireless exposure.

This page compares what research shows about radiation exposure from 5G versus 4G technologies.

Key Research Findings

  • 5G uses multiple frequency bands with different characteristics
  • Millimeter waves (high-band 5G) penetrate less deeply into tissue
  • More cell towers can actually reduce individual exposure levels

Related Studies (653)

Cellular EffectsNo Effects Found

Effects of 2.45 GHz microwave fields on liposomes entrapping glycoenzyme ascorbate oxidase: evidence for oligosaccharide side chain involvement.

Ramundo-Orlando A, Liberti M, Mossa G, D'Inzeo G. · 2004

Italian researchers exposed artificial cell membranes containing a sugar-coated enzyme to 2.45 GHz microwave radiation at various power levels. They found effects only at the highest exposure level (5.6 W/kg), and only when the enzyme retained its sugar coating - suggesting that sugar molecules on proteins may be particularly vulnerable to microwave radiation. This provides clues about how cellular components might interact with the same frequency used in WiFi and microwave ovens.

Oxidative StressNo Effects Found

Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields.

Hook et al. · 2004

Researchers exposed mouse immune cells to cell phone radiation at 835-847 MHz for over 20 hours to test whether radiofrequency signals cause oxidative stress (cellular damage from harmful molecules). They found no evidence that either FMCW or CDMA modulated signals at 0.8 W/kg caused oxidative stress, cellular damage, or changes in the cells' natural antioxidant defenses. The study suggests that cell phone-type radiation at these levels does not trigger the cellular stress responses that can lead to health problems.

DNA & Genetic DamageNo Effects Found

DNA damage in frog erythrocytes after in vitro exposure to a high peak-power pulsed electromagnetic field.

Chemeris NK et al. · 2004

Researchers exposed frog blood cells to extremely high-power pulsed electromagnetic fields (8.8 GHz) to test whether the radiation could damage DNA. While they did observe DNA damage, they found it was caused entirely by the 3.5°C temperature increase from the intense exposure, not by any non-thermal effects of the radiation itself. When they heated cells to the same temperature without radiation, the DNA damage was identical.

Immune SystemNo Effects Found

1800 MHz radiofrequency (mobile phones, different global system for mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors.

Capri M et al. · 2004

Italian researchers exposed immune cells from both young and elderly people to 1800 MHz radiofrequency radiation (the type used by cell phones) at levels similar to what phones emit. They measured whether the radiation caused cell death, affected cellular energy production, or triggered stress responses. The study found no significant biological effects from the RF exposure across any of the measurements.

DNA & Genetic DamageNo Effects Found

Measurement of DNA damage and apoptosis in molt-4 cells after in vitro exposure to radiofrequency radiation.

Hook GJ et al. · 2004

Researchers exposed immune system cells (Molt-4 T lymphoblastoid cells) to cell phone radiation at various frequencies for up to 24 hours to test whether it causes DNA damage or triggers cell death. They found no statistically significant DNA damage or cell death compared to unexposed cells across all tested frequencies and modulation types. This suggests that cell phone radiation at these exposure levels may not directly harm cellular DNA or kill immune cells in laboratory conditions.

Oxidative StressNo Effects Found

Evaluation of Parameters of Oxidative Stress after In Vitro Exposure to FMCW- and CDMA-Modulated Radiofrequency Radiation Fields.

Hook et al. · 2004

Researchers exposed mouse immune cells to cell phone radiation for 20-22 hours to see if it caused oxidative stress (cellular damage from unstable molecules). The study tested two types of signals used in mobile phones at levels similar to what phones emit. No signs of oxidative stress were detected, and the cells remained healthy throughout the exposure period.

Plant sensitivity to low intensity 105 GHz electromagnetic radiation

Tafforeau M et al. · 2004

French researchers exposed flax plant seedlings to 105 GHz electromagnetic radiation (similar to frequencies used in some wireless technologies) for just 2 hours. They found this brief exposure triggered abnormal cell division patterns in the plants, creating clusters of rapidly dividing cells called meristems. The biological response was similar to what the plants showed when exposed to physical stress or mobile phone radiation, suggesting that even non-heating levels of millimeter wave radiation can trigger measurable biological changes in living organisms.

RF absorption involving biological macromolecules

Prohofsky EW · 2004

Researchers examined how radio frequency energy interacts with DNA and proteins at the molecular level. They found that for frequencies below 4 GHz (which includes most cell phone and WiFi frequencies), any absorbed energy affects the bulk tissue surrounding these molecules rather than the molecules themselves, meaning the energy is immediately converted to heat. This challenges theories about non-thermal biological effects from common RF exposures.

Reproductive Health126 citations

Effect of gsm 900-mhz mobile phone radiation on the reproductive capacity of drosophila melanogaster.

Panagopoulos DJ, Karabarbounis A, Margaritis LH · 2004

Researchers exposed fruit flies to GSM mobile phone radiation at 900 MHz for just 6 minutes daily during their early adult lives. They found that phone radiation dramatically reduced the flies' ability to reproduce - by 50-60% when the phone was actively transmitting voice calls, and by 15-20% even when just connected but not in use. This suggests that the radiofrequency fields from cell phones can interfere with the cellular processes needed for healthy reproductive organ development.

Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields

Munoz S, Sebastian JL, Sancho M, Miranda JM · 2004

Spanish researchers used computer modeling to study how 1800 MHz cell phone radiation affects the electrical voltage across the membranes of red blood cells with different shapes. They found that normal-shaped red blood cells experienced higher induced voltage compared to abnormally shaped cells (like those seen in certain blood disorders). The study suggests that cell shape plays a crucial role in how much electromagnetic energy cells absorb.

Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain.

Ilhan A et al. · 2004

Turkish researchers exposed rats to 900 MHz mobile phone radiation for one hour daily over seven days and found significant oxidative stress damage in brain tissue. The damage included increased harmful molecules and decreased protective antioxidant enzymes. However, when rats were pre-treated with Ginkgo biloba extract, this brain damage was completely prevented, suggesting that antioxidants may protect against EMF-induced cellular harm.

Blood-forming system in rats after whole-body microwave exposure; reference to the lymphocytes.

Trosic I, Busljeta I, Pavicic I. · 2004

Croatian researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used by WiFi and microwave ovens) for 2 hours daily over periods up to 30 days. They found that longer exposures significantly reduced lymphoblasts, which are immature immune cells that develop into infection-fighting lymphocytes. The researchers interpreted this as a stress response in the blood-forming system, suggesting the body was adapting to the microwave exposure.

Radio frequency radiation effects on protein kinase C activity in rats' brain.

Paulraj R, Behari J · 2004

Researchers exposed young rats to radio frequency radiation (similar to early mobile phone frequencies) for 2 hours daily over 35 days and measured changes in protein kinase C, a crucial enzyme involved in brain cell communication and development. The exposed rats showed significantly reduced levels of this important brain enzyme compared to unexposed controls. This suggests RF radiation may interfere with normal brain development and cellular signaling processes.

The production of tumor necrosis factor in cells of tumor-bearing mice after total-body microwave irradiation and antioxidant diet.

Novoselova EG et al. · 2004

Researchers exposed tumor-bearing mice to extremely low-level microwave radiation (similar to ambient environmental levels) for 1.5 hours daily and found it actually slowed tumor growth and extended survival. The microwaves appeared to boost the immune system's production of tumor necrosis factor (TNF), a protein that helps fight cancer cells. This suggests that certain types of low-level electromagnetic exposure might have protective effects rather than harmful ones.

Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells.

Markkanen A et al. · 2004

Finnish researchers exposed yeast cells to cell phone radiation while damaging them with UV light. Pulsed radiation at 900 MHz significantly increased cell death in vulnerable cells, while continuous radiation at identical power levels had no effect, suggesting pulsing patterns matter for cellular stress responses.

Effects of 2.45-GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells.

Koyama S, Isozumi Y, Suzuki Y, Taki M, Miyakoshi J. · 2004

Researchers exposed hamster cells to WiFi-frequency radiation for two hours at different power levels. DNA damage occurred only at extremely high exposures (100-200 times typical phone levels), likely from heating effects rather than radiation itself, suggesting minimal risk from normal wireless device use.

Immune System108 citations

In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: studies of proliferation, apoptosis and mitochondrial membrane potential.

Capri M et al. · 2004

Researchers exposed human immune cells to cell phone radiation for three days. GSM signals (used by mobile phones) slightly reduced immune cell growth and altered cell membranes, while steady radiation showed no effects. This suggests pulsed phone signals may uniquely affect immune function.

The effects of whole body cell phone exposure on the t1 relaxation times and trace elements in the serum of rats.

Aksen F, Dasdag S, Akdag MZ, Askin M, Dasdag MM. · 2004

Researchers exposed rats to cell phone radiation for 20 minutes daily over a month to see if it affected essential minerals in their blood. They found that manganese and zinc levels changed significantly in exposed rats, while iron and copper remained normal. This suggests that cell phone radiation may disrupt how the body processes certain trace elements that are crucial for proper cellular function.

Oxidative Stress135 citations

Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions.

Zmyslony M, Politanski P, Rajkowska E, Szymczak W, Jajte J. · 2004

Polish researchers exposed rat immune cells (lymphocytes) to 930 MHz radiation at levels similar to cell phone emissions for 5-15 minutes. While the radiation alone didn't increase harmful free radicals, it significantly amplified free radical production when cells were already under oxidative stress from iron exposure. This suggests cell phone radiation may worsen cellular damage when your immune system is already compromised.

DNA & Genetic DamageNo Effects Found

Genotoxic Potential of 1.6 GHz Wireless Communication Signal: In Vivo Two-Year Bioassay.

Vijayalaxmi, Sasser LB, Morris JE, Wilson BW, Anderson LE. · 2003

Researchers exposed pregnant rats and their offspring to 1.6 GHz wireless signals (similar to cell phones) for two years, then examined their bone marrow cells for DNA damage. They found no difference in genetic damage between exposed rats and unexposed control rats, with damage rates around 5-6 micronuclei per 2,000 cells in all groups. This suggests that chronic exposure to these wireless signals at the tested levels did not cause detectable DNA damage in the bone marrow.

Cellular EffectsNo Effects Found

Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

Cranfield CG, Wieser HG, Dobson J. · 2003

Researchers exposed magnetic bacteria (bacteria containing magnetite particles) to radio frequency radiation similar to that emitted by GSM mobile phones to test whether RF signals cause cell death. They found no increase in bacterial mortality from RF exposure compared to sham (fake) exposures, suggesting that RF radiation alone doesn't kill these magnetite-containing cells. This challenges earlier findings that direct mobile phone exposure harmed similar bacteria, pointing researchers toward other components of phone emissions like low-frequency magnetic pulses.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.