Kesari KK, Meena R, Nirala J, Kumar J, Verma HN. · 2014
Researchers exposed young rats to 3G cell phone radiation for 2 hours daily over 60 days and examined their brain tissue. The study found significant DNA damage, increased cell death, and activation of stress response pathways in the brain. These findings suggest that prolonged cell phone exposure may harm brain cells through oxidative stress and cellular damage mechanisms.
Yilmaz A et al. · 2014
Researchers exposed rats to mobile phone radiation at typical usage levels for four weeks, then examined brain tissue for signs of cell death (apoptosis). They found significantly increased levels of proteins that control cell death in the exposed rats compared to unexposed controls. This suggests that mobile phone radiation may trigger cellular stress responses in brain tissue at exposure levels similar to everyday phone use.
Wang LF et al. · 2014
Researchers exposed blood-brain barrier cells to microwave radiation for 5 minutes and found it damaged the protective barrier between blood and brain. The microwaves broke down cellular connections, allowing substances to leak through that normally can't enter brain tissue.
Sharma A, Sisodia R, Bhatnagar D, Saxena VK. · 2014
Researchers exposed mice to 10 GHz microwave radiation for two hours daily over 30 days, then tested their memory using a water maze. Exposed mice took significantly longer to learn and remember locations, suggesting microwave exposure may impair memory formation and learning ability.
Maskey D, Kim MJ · 2014
Researchers exposed mice to radiofrequency radiation at 1.6 W/kg (similar to cell phone levels) and examined brain proteins that protect auditory neurons. They found significant decreases in two protective proteins (BDNF and GDNF) in the superior olivary complex, a brain region crucial for hearing and sound processing. This suggests RF exposure may harm the brain's auditory system by reducing proteins that normally keep hearing neurons healthy.
Lee W, Yang KL. · 2014
Researchers exposed fish embryos to extremely low frequency electromagnetic fields (3.2 kHz) at various intensities to study developmental effects. They found that EMF exposure accelerated embryonic development across multiple measures including eye formation, brain development, and hatching time. Fish exposed to the highest EMF levels also showed increased anxiety-like behavior after hatching.
Dasdag S et al. · 2014
Turkish researchers exposed rats to cell phone radiation (900 MHz) for 3 hours daily over an entire year and found it altered microRNA in brain tissue. MicroRNAs are tiny molecules that control gene activity and play crucial roles in brain function, cell growth, and death. This study demonstrates that chronic radiofrequency exposure can disrupt these fundamental cellular control mechanisms in the brain.
Salunke BP, Umathe SN, Chavan JG. · 2014
Researchers exposed mice to 50 Hz magnetic fields from power lines for 8 hours daily up to 120 days. The mice developed obsessive-compulsive behaviors and showed increased nitric oxide levels in brain regions controlling behavior, suggesting power-frequency fields can alter brain chemistry.
Pelletier SJ et al. · 2014
Researchers exposed brain cells to direct current electric fields at different intensities to see how they would respond. They found that neurons grew longer and changed shape, immune cells called microglia became more inflammatory, and support cells called astrocytes also changed their structure. This study helps explain how electric fields can directly alter brain cell behavior and function.
Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. · 2014
Researchers exposed newborn rat nerve cells to 50 Hz electromagnetic fields (power line frequency) for two hours. The exposure increased production of BDNF, a protein essential for nerve growth and brain health, by triggering calcium flow into cells and activating specific cellular pathways.
Kantar Gok D et al. · 2014
Researchers exposed rats to electric fields from power lines for up to four weeks. The strongest exposure significantly impaired the brain's ability to detect sound changes, a function crucial for attention and learning, while also causing harmful cellular damage in brain tissue.
Gao X, Wang X, Chen F, Qi H, Wang X, Ming D, Zhou P. · 2014
Chinese researchers exposed 10 people to extremely low frequency magnetic fields (1 Hz pulses at 10 milliTesla) for 20 minutes and measured their brain activity using EEG. They found significant changes in brainwave patterns and slower cognitive processing compared to a sham exposure group. This demonstrates that even brief exposure to pulsed magnetic fields can measurably alter brain function.
Narayanan SN et al. · 2014
Researchers exposed adolescent rats to cell phone radiation (900 MHz) for one hour daily over four weeks and found significant brain damage. The radiation caused oxidative stress (cellular damage from harmful molecules) in all brain regions tested, with different areas showing varying degrees of harm. The rats also displayed altered behavior, suggesting the brain damage had functional consequences.
Motawi TK, Darwish HA, Moustafa YM, Labib MM. · 2014
Researchers exposed young and adult rats to cell phone radiation (SAR 1.13 W/kg) for 2 hours daily over 60 days and found significant brain damage. The radiation caused oxidative stress (cellular damage from harmful molecules), triggered programmed cell death, and led to visible neuronal damage, with young rats showing particularly affected brain development. This suggests that chronic cell phone exposure may harm brain tissue through multiple biological pathways.
Hatice Ş. Gürler et al. · 2014
Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 30 days and measured damage to DNA and proteins in their brains. The radiation caused significant DNA damage in both brain tissue and blood, while also increasing harmful protein changes in the blood. Interestingly, rats given garlic supplements showed protection against these damaging effects.
Gürler HS, Bilgici B, Akar AK, Tomak L, Bedir A. · 2014
Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 30 days and measured DNA damage in their brains and blood. The radiation caused significant genetic damage, indicated by increased levels of 8-OHdG (a marker of DNA oxidation) in both brain tissue and blood plasma. Interestingly, rats given garlic extract were protected from this DNA damage, suggesting antioxidants may help counter EMF-induced cellular harm.
Salunke BP, Umathe SN, Chavan JG · 2014
Researchers exposed mice to 50 Hz magnetic fields (power line frequency) for 8 hours daily up to 120 days. This caused obsessive-compulsive behaviors by increasing nitric oxide levels in brain regions. The study suggests household electrical frequencies may affect brain chemistry and behavior.
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B · 2014
Researchers exposed gerbils to power line frequency magnetic fields after stroke-like brain damage. The magnetic field exposure helped reduce brain oxidative stress caused by the stroke, with stress levels returning nearly to normal by day 14, suggesting potential protective effects against brain injury.
Manikonda PK et al. · 2014
Researchers exposed young rats to 50 Hz magnetic fields from power lines for 90 days and found significant brain damage from oxidative stress. Higher magnetic field levels caused more harm across multiple brain regions, including areas controlling memory and movement, suggesting potential neurological effects.
Kantar Gok D et al. · 2014
Researchers exposed rats to 50 Hz electric fields (like those from power lines) for up to four weeks. High-intensity exposure significantly reduced brain responses that help detect sound changes, while increasing brain damage markers. This suggests electric field exposure may impair auditory processing abilities.
Deng B et al. · 2014
Chinese researchers exposed rats to electromagnetic pulse (EMP) radiation and found it caused brain damage, including neuronal death and learning problems. When they treated the rats with sevoflurane (an anesthetic gas), it protected against this brain damage by reducing oxidative stress and preventing brain cell death. This suggests that electromagnetic pulses can harm brain function, but also that protective treatments might be possible.
Shafiei SA, Firoozabadi SM, Tabatabaie KR, Ghabaee M. · 2014
Researchers exposed different areas of the brain to extremely low-frequency magnetic fields (3-45 Hz) at various intensities and measured changes in brain wave patterns using EEG. They found significant alterations in brain electrical activity, particularly reductions in alpha waves in frontal and central brain regions. The findings suggest these magnetic fields can measurably alter brain function, which the researchers propose could be developed into therapeutic protocols.
Salunke BP, Umathe SN, Chavan JG. · 2014
Researchers exposed mice to 50 Hz magnetic fields (the same frequency as household electricity) for up to 120 days and measured anxiety-like behaviors. The magnetic field exposure significantly increased anxiety in the animals, and the researchers identified that this effect occurred through changes in NMDA receptors in the brain. The study provides biological evidence that long-term exposure to extremely low frequency magnetic fields can alter brain chemistry and behavior.
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B. · 2014
Researchers exposed stroke-damaged gerbils to power line frequency magnetic fields for seven days. While initially increasing brain stress, the magnetic field exposure ultimately protected against stroke damage, returning brain stress markers to normal levels by day fourteen, suggesting potential therapeutic benefits.
Manikonda PK et al. · 2014
Researchers exposed young rats to extremely low frequency magnetic fields (the type emitted by power lines and household appliances) for 90 days and found significant oxidative stress damage throughout their brains. The damage was dose-dependent, meaning higher magnetic field levels caused more harm, and affected different brain regions differently. This suggests that chronic exposure to these common magnetic fields may disrupt normal brain function by overwhelming the brain's natural defense systems.