Kesari KK, Behari J, Kumar S. · 2010
Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used in WiFi routers and microwave ovens) for 2 hours daily over 35 days at relatively low power levels. They found significant DNA damage in brain cells, disrupted antioxidant defenses, and changes in proteins that regulate cell division. The authors concluded this chronic exposure pattern may promote brain tumor development.
Marino AA, Carrubba S · 2009
Researchers analyzed 55 studies examining whether mobile phone radiation affects brain electrical activity measured by EEG. They found that 87% of these studies were funded by the wireless industry, and that both positive and negative studies had serious methodological flaws that prevented reliable conclusions. The authors argue that this systematic doubt about EMF effects was manufactured by industry funding rather than reflecting genuine scientific uncertainty.
Lipping T et al. · 2009
Researchers exposed eleven anesthetized pigs to mobile phone radiation at 890 MHz to test whether radiofrequency signals could trigger brain activity changes in a highly sensitive state. They found no correlation between RF exposure and brain wave patterns, though the animals experienced significant temperature increases (1.6°C) and elevated heart rates during the 10-minute exposures. This suggests that while RF radiation can cause heating effects, it may not directly stimulate brain activity even under conditions of heightened neural sensitivity.
Furubayashi T et al. · 2009
Researchers exposed 54 women (including 11 with self-reported electromagnetic hypersensitivity) to cell tower radiation at 10 V/m for 30 minutes in a controlled lab setting. Neither group could detect when they were actually being exposed to EMF, and both groups showed identical biological responses whether exposed to real or fake radiation. The study found no evidence that people with electromagnetic hypersensitivity react differently to cell tower emissions than healthy controls.
Finnie JW, Blumbergs PC, Cai Z, Manavis J. · 2009
Researchers exposed mice to cell phone radiation (900 MHz) for either one hour or repeatedly over two years to see if it would damage the blood-brain barrier - the protective shield that keeps toxins out of the brain. They looked for increased levels of aquaporin-4, a protein that indicates barrier damage. The study found no changes in this protein after either short-term or long-term exposure, suggesting the blood-brain barrier remained intact.
Finnie JW, Chidlow G, Blumbergs PC, Manavis J, Cai Z.. · 2009
Researchers exposed pregnant mice to cell phone radiation (900 MHz) for one hour daily throughout pregnancy to see if it caused stress in developing fetal brains. They measured heat shock proteins, which are biological markers that cells produce when under stress. The study found no evidence that the radiation caused stress responses in the fetal brain tissue, suggesting no detectable harm at the exposure levels tested.
de Gannes FP et al. · 2009
Researchers exposed rats to cell phone radiation (GSM-900) for 2 hours and checked for brain damage 14 and 50 days later. They found no evidence of blood-brain barrier leakage or neuronal death at exposure levels ranging from very low to high. This study directly contradicted earlier research that claimed similar exposures caused significant brain damage.
Ahlbom A et al. · 2009
Researchers from the International Commission for Non-Ionizing Radiation Protection reviewed all available studies on mobile phone use and brain tumor risk through 2009. They found no increased risk of brain tumors within approximately 10 years of mobile phone use, though they noted the observation period may be too short to detect slow-growing tumors that could take decades to develop. The review acknowledged significant methodological problems in existing studies, including biased recall of phone usage patterns.
Eltiti S et al. · 2009
Researchers exposed 88 people (including those who reported electromagnetic sensitivity) to cell tower signals for 50 minutes while testing their memory, attention, and heart rate. The study found no differences in cognitive performance or physiological measures between real exposure and fake exposure sessions. This suggests that brief exposure to typical cell tower radiation levels doesn't immediately impair thinking or basic body functions.
Lipping T et al. · 2009
Researchers exposed anesthetized pigs to GSM mobile phone radiation (890 MHz) to test whether radio frequency signals could trigger brain activity changes detectable in EEG measurements. The study used a highly sensitive testing method where anesthetized animals show exaggerated responses to even minor stimuli. Despite exposure levels of 31 W/kg (much higher than typical phone use), no changes in brain electrical activity were observed, though the animals did experience increased body temperature and heart rate.
Finnie JW, Chidlow G, Blumbergs PC, Manavis J, Cai Z · 2009
Researchers exposed pregnant mice to 900 MHz cell phone radiation (at 4 W/kg) for one hour daily throughout pregnancy to see if it caused stress in developing fetal brains. They found no evidence of cellular stress responses when they examined the brain tissue using specialized markers called heat shock proteins. This suggests that this level of radiofrequency exposure during pregnancy may not trigger detectable stress responses in developing brain tissue.
Finnie JW, Blumbergs PC, Cai Z, Manavis J · 2009
Researchers exposed mice to cell phone radiation at 900 MHz for either one hour or two years to see if it would increase a brain protein called aquaporin-4, which rises when the blood-brain barrier becomes leaky. They found no increase in this protein after either short or long-term exposure, suggesting that cell phone radiation at this level doesn't make the blood-brain barrier more permeable.
Eltiti S et al. · 2009
Researchers exposed 88 people (including those who claimed to be sensitive to electromagnetic fields) to cell tower signals for 50 minutes while they performed memory and attention tests. The study found no effects on cognitive performance or physiological measures like heart rate and skin conductance in either sensitive or control participants. This suggests that short-term exposure to typical cell tower radiation levels doesn't impair brain function or cause detectable physical responses.
de Gannes FP et al. · 2009
French researchers exposed rats' heads to cell phone radiation (900 MHz GSM) for 2 hours to test whether it damages the blood-brain barrier (the protective layer around the brain) or kills brain cells. They found no evidence of brain damage or barrier leakage at exposure levels both below and above typical cell phone use. This study contradicted earlier research that had suggested cell phone radiation could harm the brain's protective barrier.
Abramson MJ et al. · 2009
Researchers studied 317 Australian teenagers to see if mobile phone use affected their thinking abilities. They found that teens who made more phone calls had faster but less accurate responses on cognitive tests, with poorer working memory and learning performance. Importantly, the same effects occurred with text messaging, suggesting the changes came from phone usage habits rather than radiofrequency radiation exposure.
Wake K et al. · 2009
Researchers developed a method to accurately map how cell phone radiation (called SAR) spreads throughout the human brain using standard phone testing data. They found they could successfully estimate radiation exposure patterns in specific brain regions where tumors develop. This technique was used in the major INTERPHONE study to better understand the relationship between cell phone use and brain cancer risk.
Vrijheid M et al. · 2009
This study examined a critical flaw in mobile phone brain tumor research: people who refuse to participate in studies are less likely to use mobile phones regularly. Researchers found that non-participants used phones at lower rates (50-56%) compared to study participants (66-69%), creating a systematic bias that could underestimate cancer risks by about 10%. This means many studies may be missing the very people whose phone usage patterns could reveal stronger links to brain tumors.
Soderqvist F, Carlberg M, Hardell L · 2009
Swedish researchers examined whether long-term mobile and cordless phone use affects the blood-cerebrospinal fluid barrier by measuring transthyretin, a protein that helps protect the brain. They found that men who used phones longer had higher transthyretin levels, while women showed elevated levels when blood was drawn soon after phone calls. These changes suggest that radiofrequency radiation may alter the brain's protective barriers.
Naziroğlu M, Gümral N · 2009
Turkish researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 28 days and found it depleted key brain antioxidants including vitamins A, C, and E. When rats were given selenium or L-carnitine supplements during exposure, these protective nutrients were largely restored, with L-carnitine showing stronger protective effects. This suggests that wireless device radiation creates oxidative stress in brain tissue, but certain antioxidants may help counteract this damage.
Luria R, Eliyahu I, Hareuveny R, Margaliot M, Meiran N. · 2009
Israeli researchers tested how cell phone radiation affects thinking speed by having 48 men perform memory tasks while GSM phones were placed on different sides of their heads. They found that when the phone was on the left side of the head, participants responded significantly slower with their right hand during the first few minutes of exposure. This suggests cell phone radiation can temporarily impair cognitive performance, and that the specific placement of the phone and timing of exposure matter for detecting these effects.
López-Martín E et al. · 2009
Researchers exposed rats to GSM cell phone radiation (the type used in mobile phones) and found it specifically amplified brain activity in animals already prone to seizures. The pulse-modulated radiation from GSM signals affected different brain regions than continuous radiation, particularly areas involved in memory and emotion processing. This suggests that the specific pulsing pattern of cell phone signals may have unique effects on brain function, especially in vulnerable individuals.
Hartikka H et al. · 2009
Finnish researchers studied 99 brain tumor patients to see if gliomas (a type of brain cancer) occurred more often in the part of the brain closest to where people hold their cell phones. They found that mobile phone users were twice as likely to develop tumors within 4.6 centimeters of their phone's typical position compared to non-users (28% vs 14%). This innovative approach directly examined whether radiofrequency radiation causes localized cancer effects in the brain region receiving the highest exposure.
Hardell L, Carlberg M. · 2009
Swedish researchers analyzed brain tumor patients and found that people who used mobile phones or cordless phones on the same side of their head where tumors developed had significantly higher cancer risks. The risk was especially pronounced for those who started using wireless phones before age 20, with mobile phone users showing a 5.2-fold increased risk for astrocytoma (a type of brain cancer). The study also found that brain cancer rates in Sweden increased by over 2% annually during the 2000s, coinciding with widespread wireless phone adoption.
de Tommaso M et al. · 2009
Researchers tested how 900 MHz cell phone signals affect brain electrical activity by measuring a specific brainwave pattern called contingent negative variation (CNV) in 10 volunteers. They found that both active phones and sham phones (with internal circuits running but no RF emission) reduced brain arousal and expectation responses compared to phones that were completely off. The study suggests that both the GSM radio signal and the low-frequency magnetic fields from the phone's battery and circuits can alter normal brain function.
Daniels WM, Pitout IL, Afullo TJ, Mabandla MV. · 2009
Researchers exposed rats to electromagnetic radiation in the mobile phone frequency range and tested their behavior, brain structure, and stress hormone levels. While they found no changes in learning ability or brain structure, exposed rats showed decreased movement, increased grooming behaviors, and higher stress hormone levels. These behavioral changes suggest that mobile phone radiation may disrupt normal brain function even when obvious structural damage isn't visible.