Söderqvist F, Hardell L, Carlberg M, Mild KH · 2010
Researchers exposed 41 people to cell phone radiation for 30 minutes and found increased levels of transthyretin, a protein that helps prevent Alzheimer's disease by blocking harmful brain plaques. This suggests certain radiofrequency exposures might offer protective effects against Alzheimer's.
Rağbetlı MC et al. · 2010
Researchers exposed pregnant mice to mobile phone radiation at levels similar to what humans experience (0.95 W/kg SAR) and found a significant decrease in Purkinje cells in the developing cerebellum of offspring. Purkinje cells are critical neurons that control movement, balance, and coordination. This study suggests that prenatal exposure to mobile phone radiation may affect brain development in areas responsible for motor function.
Maskey D et al. · 2010
Researchers exposed mice to cell phone radiation (835 MHz) for one month and found almost complete loss of brain cells in the hippocampus, the region responsible for memory and learning. This suggests cell phone radiation may disrupt brain function and potentially affect memory formation.
Jorge-Mora T et al. · 2010
Researchers exposed rats to WiFi-frequency radiation for 30 minutes and found increased heat shock proteins in brain regions controlling hormones and sensory processing. These proteins indicate cellular stress, with effects lasting 24 hours, suggesting brief microwave exposure triggers brain stress responses.
Grigoriev YG et al. · 2010
Russian researchers exposed rats to microwave radiation at levels similar to what cell phones emit (2450 MHz frequency) for 7 hours daily over 30 days. They found the radiation triggered immune system changes in brain tissue, causing the body to produce antibodies against its own brain cells. This suggests that even low-level microwave exposure may cause autoimmune reactions where the immune system mistakenly attacks healthy tissue.
Arendash GW et al. · 2010
Researchers exposed mice to cell phone-level radiation (918 MHz) and found it improved memory and reduced Alzheimer's-related brain deposits in both normal and Alzheimer's mice. While promising for potential treatments, these mouse results require extensive human studies before any clinical applications.
Ammari M et al. · 2010
French researchers exposed rats to cell phone radiation for 8 weeks and found increased brain inflammation markers that lasted at least 10 days after exposure ended. This suggests chronic mobile phone use may trigger inflammatory brain responses similar to those seen in neurodegenerative diseases.
Volkow ND et al. · 2010
Researchers exposed 15 healthy people to pulsed magnetic fields (920 Hz) while measuring brain glucose metabolism using PET scans. They found that areas of the brain exposed to stronger electric fields showed decreased metabolic activity compared to unexposed areas. The stronger the field, the greater the reduction in brain metabolism, suggesting that electromagnetic fields can directly alter brain function.
Gulturk S et al. · 2010
Scientists exposed diabetic rats to 50 Hz magnetic fields (from power lines) for three hours daily over 30 days. The magnetic fields increased blood-brain barrier permeability, allowing substances to pass more easily into brain tissue. This matters because a compromised barrier can let toxins reach the brain.
Akdag MZ et al. · 2010
Researchers exposed rats to extremely low-frequency magnetic fields at levels matching current safety standards for 2 hours daily over 10 months. They found that these exposures significantly increased oxidative stress (cellular damage from free radicals) and weakened the brain's natural antioxidant defenses, though they didn't trigger cell death. This suggests that even magnetic field exposures within current safety limits may cause harmful biochemical changes in brain tissue over time.
Xu S et al. · 2010
Researchers exposed brain neurons to cell phone radiation (1800 MHz) for 24 hours and found it damaged mitochondrial DNA-the genetic material in cells' energy centers. The radiation created harmful molecules that reduced neurons' ability to produce energy, suggesting potential cellular harm from prolonged exposure.
Akdag MZ et al. · 2010
Researchers exposed rats to low-frequency magnetic fields at safety-approved levels for 10 months. The fields increased harmful oxidative stress and weakened brain antioxidant defenses without killing cells. This suggests current safety standards may not prevent cellular damage from long-term exposure.
Gulturk S et al. · 2010
Researchers exposed diabetic rats to power line frequency magnetic fields for 30 days. The magnetic fields weakened the blood-brain barrier, which normally protects the brain from harmful substances. Diabetic animals with magnetic field exposure showed the worst barrier damage, potentially allowing toxins easier brain access.
Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taşkin A · 2010
Researchers exposed rats to magnetic fields at safety-approved levels for 10 months. Even these "safe" exposures caused brain cell damage and reduced natural antioxidant defenses. This suggests current safety standards may not adequately protect against long-term biological harm.
Xu S et al. · 2010
Researchers exposed brain neurons to cell phone-frequency radiation (1800 MHz) at levels similar to heavy phone use and found it damaged the DNA inside cellular powerhouses called mitochondria. The radiation increased markers of DNA damage by 24 hours and reduced the neurons' ability to produce energy. Importantly, the antioxidant melatonin completely prevented this damage, suggesting oxidative stress was the underlying cause.
Sonmez OF, Odaci E, Bas O, Kaplan S · 2010
Researchers exposed adult female rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over 28 days. They found that exposed rats had significantly fewer Purkinje cells in their cerebellum compared to unexposed rats. Purkinje cells are critical brain neurons that control movement, balance, and coordination, making their loss potentially serious for neurological function.
Maskey D et al. · 2010
Researchers exposed mice to cell phone radiation (835 MHz) for 8 hours daily over 3 months. The radiation caused brain cell death and inflammation in the hippocampus, the brain region responsible for memory and learning, suggesting chronic cell phone use may damage critical brain structures.
Maskey D et al. · 2010
Researchers exposed mice to cell phone frequency radiation (835 MHz) for up to one month and examined brain tissue in the hippocampus, a region critical for memory and learning. They found significant damage to calcium-binding proteins and near-complete loss of pyramidal brain cells in the CA1 area after one month of exposure. This cellular damage could disrupt normal brain functions including memory formation and neural connectivity.
Söderqvist F, Hardell L, Carlberg M, Mild KH · 2010
Researchers exposed 41 people to cell phone radiation for 30 minutes and found it increased levels of transthyretin (TTR), a protein that helps protect the brain from Alzheimer's disease by clearing harmful plaques. In a separate study of 313 people, longer-term phone use was also linked to higher TTR levels. This suggests cell phone radiation might actually trigger a protective response in the brain against Alzheimer's disease.
Imge EB, Kiliçoğlu B, Devrim E, Cetin R, Durak I · 2010
Researchers exposed rats to cell phone radiation (900 MHz) for four weeks and measured changes in brain tissue chemistry. They found that phone radiation reduced the activity of key protective enzymes in the brain, but vitamin C supplementation helped restore these protective mechanisms. This suggests that cell phone radiation may stress brain cells through oxidative damage, but antioxidants might offer some protection.
Croft RJ et al. · 2010
Scientists tested how 2G and 3G cell phone signals affect brain waves in 103 people of different ages during 55-minute exposures. Only young adults showed brain wave changes from 2G signals, while teenagers and elderly showed no effects, suggesting age influences brain sensitivity to phone radiation.
Bak M, Dudarewicz A, Zmyślony M, Sliwinska-Kowalska M · 2010
Researchers exposed 15 volunteers to GSM cell phone radiation for 20 minutes while measuring their brain activity using a test called event-related potentials (ERPs), which tracks how the brain processes information. They found that during EMF exposure, the brain's P300 wave amplitude decreased significantly, but returned to normal levels immediately after exposure ended. This suggests that cell phone radiation can temporarily alter brain function in real-time.
Arendash GW et al. · 2010
Researchers exposed mice to cell phone radiation (918 MHz) for one hour daily over eight months. The exposure improved memory and reduced Alzheimer's-related brain plaques in both normal and Alzheimer's-prone mice, suggesting certain electromagnetic fields might benefit brain health.
Ammari M et al. · 2010
Researchers exposed rats to cell phone-level radiation (900 MHz) for 8 weeks and found increased levels of GFAP, a protein that indicates brain inflammation and damage to protective brain cells called astrocytes. The brain damage occurred at radiation levels similar to what people experience during cell phone use, and persisted for at least 10 days after exposure ended.
Xu S et al. · 2010
Researchers exposed brain neurons to cell phone radiation at 1800 MHz and found it damaged mitochondrial DNA, the genetic material in cells' energy centers. The radiation increased DNA damage markers and reduced healthy mitochondrial genes. This suggests cell phone radiation may harm brain cells' power-producing structures.