Simkó M et al. · 2006
Researchers exposed human immune cells to radiofrequency radiation at cell phone levels (2 W/kg SAR) and ultrafine air pollution particles to see if they would trigger cellular stress responses. They found that while the particles caused significant oxidative stress and free radical production, the RF radiation alone showed no measurable effects on stress proteins or free radical levels, even when combined with the particles.
Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. · 2006
Researchers exposed human immune cells (monocytes and lymphocytes) to cell phone radiation at 1,800 MHz for 30-45 minutes to see if it would trigger oxidative stress or cellular stress responses. They found no meaningful biological effects from the RF exposure, with any statistical differences appearing to be due to measurement variations rather than actual cellular damage.
Lantow M, Schuderer J, Hartwig C, Simko M. · 2006
Researchers exposed human immune cells to 1800 MHz radiofrequency radiation (the same frequency used by GSM cell phones) at various power levels to see if it would trigger free radical production or stress protein responses. They found no significant effects on either measure, even at exposure levels up to 2.0 W/kg. This suggests that RF radiation at these levels doesn't cause oxidative stress in these particular immune cell types.
Hamann W, Abou-Sherif S, Thompson S, Hall S. · 2006
Researchers applied pulsed radiofrequency energy to nerve areas in rats and found it triggered a stress response in small pain-sensing neurons, even at temperatures below what would cause obvious tissue damage. The treatment specifically affected the types of nerve cells that carry pain signals (C and A-delta fibers), suggesting radiofrequency can alter nerve function through non-thermal mechanisms. This challenges the assumption that RF energy is only harmful when it heats tissue enough to cause visible damage.
Ferreira AR et al. · 2006
Researchers exposed pregnant rats to cell phone radiation during pregnancy and found their offspring had significantly more DNA damage in their blood cells compared to unexposed offspring. The DNA damage appeared as micronuclei (small fragments of broken chromosomes) in red blood cells, indicating the radiation affected developing blood-forming tissues. This suggests cell phone radiation during pregnancy may cause genetic damage in developing offspring, even though the study found no changes in oxidative stress markers.
Anghileri LJ, Mayayo E, Domingo JL, Thouvenot P. · 2006
Researchers exposed mice to radio frequency radiation from cellular phones and found it accelerated cancer development in ways similar to known cancer-promoting chemicals. The study showed that RF exposure triggered calcium ion signals that activated cancer-causing genes while weakening immune defenses. This suggests cell phone radiation may speed up cancer progression through the same biological pathways used by established carcinogens.
Anghileri LJ, Mayayo E, Domingo JL. · 2006
Researchers investigated whether iron supplements might worsen cancer risk from radiofrequency radiation exposure using animals that naturally develop lymphomas (blood cancers) as they age. They found that combining radiofrequency exposure with iron injections created a synergistic effect, meaning the combination was more dangerous than either factor alone. This suggests that people receiving iron therapy might face increased cancer risk from RF radiation exposure.
Zhao R, Zhang SZ, Yao GD, Lu DQ, Jiang H, Xu ZP · 2006
Researchers exposed newborn rat brain cells to 1.8 GHz radiofrequency radiation (similar to cell phone frequencies) at 2 watts per kilogram for 24 hours and found that 34 out of 1,200 genes changed their expression levels. Most notably, a gene called MAP2, which helps maintain the structural framework of brain cells, became significantly more active after radiation exposure.
Zhang DY, Xu ZP, Chiang H, Lu DQ, Zeng QL. · 2006
Researchers exposed hamster lung cells to 1800 MHz radiation from GSM cell phones for 1 or 24 hours. Twenty-four hour exposure significantly increased DNA damage in 37.9% of cells versus 28.0% in unexposed cells, showing duration matters for cellular harm.
Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z. · 2006
Researchers exposed human breast cancer cells (MCF-7) to cell phone radiation at 1800 MHz for 24 hours to see if it changed gene and protein activity. While initial tests suggested some genes might be affected, follow-up verification tests found no consistent changes. The study concluded that cell phone radiation at these levels does not produce convincing evidence of biological effects on cellular gene or protein expression.
Zeng QL, Weng Y, Chen GD, Lu DQ, Chiang H, Xu ZP · 2006
Researchers exposed human breast cancer cells to cell phone radiation at levels similar to what phones produce, testing different exposure patterns and durations. They found that the radiation changed how cells produced proteins, particularly affecting proteins involved in DNA repair, cell communication, and basic cellular functions. The changes depended on both how long the cells were exposed and whether the exposure was continuous or intermittent.
Wang J et al. · 2006
Researchers exposed human brain cells (A172) to microwave radiation at 2450 MHz (the same frequency used in microwave ovens and WiFi) to see if it triggers cellular stress responses. They found that extremely high radiation levels (100-200 W/kg) caused specific stress protein changes that couldn't be explained by heating alone. This suggests microwave radiation may cause biological stress in cells through mechanisms beyond just warming tissue.
Vanderwaal RP, Cha B, Moros EG, Roti Roti JL. · 2006
Scientists tested whether cell phone radiation triggers the same cellular stress response as heat in laboratory cells. While heat clearly activated stress proteins, cell phone signals at levels 5-10 times higher than normal phone use caused no detectable stress response, suggesting different biological effects.
Trosic I, Busljeta I. · 2006
Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for 2 hours daily over weeks. The exposure initially damaged blood cells and disrupted bone marrow production, but effects normalized by study's end, suggesting rats may adapt to chronic microwave exposure.
Takashima Y et al. · 2006
Japanese researchers exposed cells to 2.45 GHz radiation (WiFi frequency) at different power levels. Cell growth remained normal up to 100 W/kg, but died at 200 W/kg when temperatures exceeded 104°F, showing cellular damage occurs only from significant heating effects.
Hoyto A, Sihvonen AP, Alhonen L, Juutilainen J, Naarala J · 2006
Researchers exposed mouse cells to cell phone-level radiofrequency radiation for 24 hours. The RF radiation itself caused no biological effects, but tiny temperature increases (less than 1°C) significantly affected cellular enzyme activity, showing temperature control is crucial in EMF studies.
Capri M et al. · 2006
Italian researchers exposed immune cells from young and elderly people to cell phone radiation levels. They found radiation reduced CD95 (a key immune protein) only in older adults' cells, not younger ones, suggesting aging may increase vulnerability to radiofrequency effects on immune function.
Zhang DY, Xu ZP, Chiang H, Lu DQ, Zeng QL. · 2006
Chinese researchers exposed hamster lung cells to cell phone radiation at 1800 MHz (the frequency used by GSM networks) for either 1 or 24 hours to see if it would damage DNA. They found that 24-hour exposure at high intensity (3.0 W/kg) significantly increased DNA damage markers compared to unexposed cells, while 1-hour exposure showed no effect. This suggests that prolonged exposure to cell phone-type radiation may harm cellular DNA.
Jelenković A et al. · 2006
Researchers exposed rats to magnetic fields from power lines for seven days and found increased brain damage from harmful free radicals. The damage was worst in brain areas controlling memory and decision-making, suggesting these common electromagnetic fields may harm brain cells.
Lixia S et al. · 2006
Researchers exposed human eye lens cells to cell phone radiation at different power levels for 2 hours. Higher exposures caused temporary DNA damage and triggered cellular stress responses, suggesting that phone radiation can affect eye cells even without heating tissue.
Zhang DY, Xu ZP, Chiang H, Lu DQ, Zeng QL. · 2006
Researchers exposed Chinese hamster lung cells to cell phone radiation (1800 MHz GSM) at levels similar to what your phone produces during heavy use. After 24 hours of intermittent exposure, they found a 35% increase in DNA damage markers compared to unexposed cells. This suggests that prolonged cell phone radiation exposure may cause genetic damage at the cellular level.
Lixia S et al. · 2006
Scientists exposed human eye lens cells to cell phone radiation at different power levels for 2 hours. At the highest level (3 W/kg), cells showed temporary DNA breaks and increased protective proteins, suggesting cellular defense mechanisms activate when exposed to wireless radiation.
Whitehead TD et al. · 2005
Researchers exposed cells to radiofrequency radiation from cell phone signals (CDMA, FDMA, and TDMA) at high absorption rates of 5-10 W/kg to see if it would activate Fos, a gene linked to cellular stress and potential cancer development. They found no significant changes in Fos expression compared to unexposed cells, failing to confirm an earlier study that had reported such effects. This suggests that RF radiation at these levels may not trigger this particular cellular stress response.
Wang J et al. · 2005
Researchers exposed mouse cells to 2450 MHz microwave radiation (the same frequency used in microwave ovens and WiFi) at extremely high power levels to test whether it could cause cancer-like changes. The radiation alone didn't cause cancer transformation, but when combined with a known cancer-causing chemical, very high radiation levels (100+ W/kg) increased the rate of malignant transformation beyond what the chemical alone produced.
Ozguner M et al. · 2005
Turkish researchers exposed male rats to 900 MHz radiofrequency radiation (similar to cell phones) for 30 minutes daily over 4 weeks and examined effects on reproductive organs. While the study found decreased testosterone levels and some structural changes in testicular tissue, the researchers concluded these changes did not significantly impact sperm production or overall reproductive function. The findings suggest cell phone-type radiation may cause hormonal changes but may not severely impair male fertility at these exposure levels.