3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

Is 5G Safe? What the Research Actually Shows

Based on 574 peer-reviewed studies

Share:

5G technology has generated significant public concern about health effects. The topic has also attracted misinformation, making it difficult for people to understand what scientific research actually shows about 5G safety.

5G operates across different frequency bands—some similar to existing 4G networks, others using higher frequencies (millimeter waves) that are relatively new for widespread consumer exposure. This page focuses on what peer-reviewed research says about radiofrequency radiation at 5G frequencies.

We present the scientific evidence objectively, including both studies that raise concerns and those that find no effects, so you can make informed judgments based on actual research.

Key Research Findings

  • Limited research exists specifically on 5G millimeter wave frequencies
  • Lower-band 5G uses frequencies similar to well-studied 4G/LTE
  • Swedish 2025 report: 'need for more research' on higher 5G bands

Related Studies (574)

Cellular EffectsNo Effects Found

Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells.

Miyakoshi J et al. · 2005

Researchers exposed human brain tumor cells to 1950 MHz radiofrequency radiation (similar to 3G cell phone frequencies) at various intensities for up to 2 hours. While the radiation didn't affect cell growth or activate major stress response proteins, it did reduce a specific cellular protection mechanism at the highest exposure level (10 W/kg). This suggests that even when cells appear unaffected, subtle molecular changes may still be occurring.

Immune SystemNo Effects Found

Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes.

Lim HB, Cook GG, Barker AT, Coulton LA. · 2005

Researchers exposed human white blood cells to 900 MHz cell phone radiation at various power levels for up to 4 hours to see if it triggered a cellular stress response. The cells showed no signs of producing stress proteins (the body's natural defense against harmful conditions) after RF exposure, even though they did respond normally when heated to 42°C. This suggests that cell phone-type radiation at these levels doesn't cause detectable cellular stress in immune cells.

Cellular EffectsNo Effects Found

Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation.

Lee JS, Huang TQ, Lee JJ, Pack JK, Jang JJ, Seo JS. · 2005

Researchers exposed genetically modified mice (lacking a key protective protein called HSP70) to cell phone radiation at 849 MHz and 1763 MHz frequencies for 10 weeks to see if repeated exposure would trigger cellular stress responses. Even though these mice were more vulnerable to stress than normal mice, the radiofrequency radiation at 0.4 W/kg caused no detectable changes in cell death, cell growth, or stress protein production. This suggests that moderate levels of RF radiation may not activate cellular stress pathways even in compromised organisms.

Cellular EffectsNo Effects Found

The Heat-Shock Factor is not Activated in Mammalian Cells Exposed to Cellular Phone Frequency Microwaves.

Laszlo et al. · 2005

Researchers tested whether cell phone radiation triggers the cellular stress response in mammalian cells by measuring heat-shock factor activation, a key protein that responds to cellular stress. They exposed hamster, mouse, and human cells to both low (0.6 W/kg) and high (5 W/kg) levels of cell phone frequency radiation but found no activation of this stress response pathway. This suggests that cell phone radiation at these levels does not trigger the specific cellular stress mechanism that some scientists theorized could contribute to cancer development.

DNA & Genetic DamageNo Effects Found

Effect of high-frequency electromagnetic fields with a wide range of SARs on chromosomal aberrations in murine m5S cells.

Komatsubara Y et al. · 2005

Japanese researchers exposed mouse cells to 2.45 GHz microwave radiation (the same frequency used in microwave ovens and WiFi) for 2 hours at extremely high power levels up to 100 watts per kilogram. They found no chromosomal damage or genetic changes in the cells, even at these intense exposure levels that far exceed what humans typically experience from wireless devices.

Cancer & TumorsNo Effects Found

Effect of radiofrequency radiation exposure on mouse skin tumorigenesis initiated by 7,12-dimethybenz[alpha]anthracene.

Huang TQ, Lee JS, Kim TH, Pack JK, Jang JJ, Seo JS. · 2005

Researchers exposed mice to radiofrequency radiation at cell phone frequencies (849 MHz and 1,763 MHz) for 19 weeks to test whether RF exposure could promote skin tumor growth in animals already treated with a cancer-causing chemical. No skin tumors developed in any of the RF-exposed groups, while 95% of mice treated with a known tumor promoter developed tumors. This suggests that RF radiation at levels similar to mobile phones does not act as a tumor promoter for skin cancer.

Cellular EffectsNo Effects Found

An investigation of the effects of TETRA RF fields on intracellular calcium in neurones and cardiac myocytes.

Green AC et al. · 2005

Researchers exposed brain and heart cells to TETRA radio signals (the frequency used by emergency services) to see if it disrupted calcium levels inside the cells. Calcium is crucial for cell function, especially in neurons and heart muscle. The study found no significant changes in calcium activity at any exposure level tested, suggesting TETRA fields don't interfere with this fundamental cellular process.

DNA & Genetic DamageNo Effects Found

Effects of 1-week and 6-week exposure to GSM/DCS radiofrequency radiation on micronucleus formation in B6C3F1 Mice.

Gorlitz BD et al. · 2005

Researchers exposed mice to cell phone radiation (GSM and DCS frequencies) for 2 hours daily over 1 and 6 weeks to test whether it causes DNA damage in blood cells and other tissues. They found no increase in micronuclei (tiny fragments that indicate genetic damage) in any of the cell types examined, even at radiation levels up to 33.2 mW/g. This suggests that cell phone-type radiation at these exposure levels does not cause detectable genetic damage in mice.

Brain & Nervous SystemNo Effects Found

Effects of universal mobile telecommunications system (UMTS) electromagnetic fields on the blood-brain barrier In Vitro.

Franke H et al. · 2005

German researchers tested whether 3G cell phone signals could damage the blood-brain barrier (the protective filter that keeps toxins out of the brain) by exposing pig brain cells to UMTS signals for up to 84 hours. They found no evidence that the radiofrequency radiation affected the barrier's protective function, permeability, or structural proteins. This suggests that 3G signals at typical phone exposure levels may not compromise this critical brain protection system.

DNA & Genetic DamageNo Effects Found

Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields.

Zeni O et al. · 2005

Italian researchers exposed human white blood cells to 900 MHz cell phone radiation for 2 hours at levels similar to what phones emit during calls. They tested multiple ways to detect DNA damage but found no statistically significant genetic harm at either exposure level tested. The study suggests that short-term exposure to cell phone radiation at typical use levels may not cause immediate DNA damage in blood cells.

2.45GHz radiofrequency fields alter gene expression in cultured human cells.

Lee S et al. · 2005

Researchers exposed human immune cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for 2-6 hours and found it altered the activity of hundreds of genes. After just 2 hours, 221 genes changed their expression patterns, increasing to 759 genes after 6 hours. Importantly, genes related to cell death increased their activity while genes controlling normal cell division decreased, and this happened without any heating effects.

Structural and kinetic effects of mobile phone microwaves on acetylcholinesterase activity.

Barteri M, Pala A, Rotella S. · 2005

Italian researchers exposed acetylcholinesterase, a crucial brain enzyme that helps nerve cells communicate, to radiation from a commercial cell phone. They found that the cell phone radiation irreversibly altered both the structure and activity of this enzyme. This matters because acetylcholinesterase is essential for proper nervous system function, and any disruption could potentially affect brain and nerve activity.

Radiofrequency-induced carcinogenesis: cellular calcium homeostasis changes as a triggering factor.

Anghileri LJ, Mayayo E, Domingo JL, Thouvenot P. · 2005

Researchers exposed cancer-prone mice to radiofrequency radiation for just one hour per week over four months and tracked their health for 18 months. The RF-exposed mice developed cancer earlier and died sooner than unexposed controls, with the radiation disrupting calcium transport in cells - a process critical for normal cell function. This suggests that even minimal RF exposure may accelerate cancer development in vulnerable populations.

Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells.

Nikolova T et al. · 2005

German researchers exposed developing brain cells to both power line frequencies (50 Hz) and cell phone frequencies (1.71 GHz) for 6 hours to study genetic effects. They found that both types of electromagnetic fields triggered changes in genes that control cell death and DNA damage responses, though the cells themselves appeared to function normally afterward. This suggests that EMF exposure can activate cellular stress responses even when no obvious harm is visible.

Genetic damage in mobile phone users: some preliminary findings.

Gandhi G, Anita · 2005

Researchers tested 24 mobile phone users' blood cells for genetic damage and found significantly more DNA breaks and chromosomal abnormalities compared to non-users. The study used two different laboratory tests to measure cellular damage in white blood cells from people exposed to mobile phone radiation between 800-2000 MHz. These findings suggest that everyday mobile phone use may cause measurable genetic damage at the cellular level.

Nitric oxide level in the nasal and sinus mucosa after exposure to electromagnetic field.

Yariktas M et al. · 2005

Researchers exposed rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for two weeks and measured nitric oxide levels in their nasal passages. They found that EMF exposure significantly increased nitric oxide production in the nose and sinus tissues, but giving the rats melatonin prevented this increase. This suggests that cell phone radiation may trigger inflammatory responses in nasal tissues.

Studying the synergistic damage effects induced by 1.8GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro.

Baohong Wang et al. · 2005

Researchers exposed human immune cells to 1.8 GHz cell phone radiation (the same frequency used by many mobile phones) for 2-3 hours to see if it damages DNA. While the radiation alone didn't harm DNA, it significantly amplified the damage when cells were also exposed to certain toxic chemicals. This suggests cell phone radiation may make our cells more vulnerable to other environmental toxins.

Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline.

Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. · 2005

Researchers exposed mice to cell phone-level radiation (900 MHz) for 12 hours daily over a week and examined sperm DNA for damage. While the mice appeared healthy and sperm counts looked normal, detailed genetic analysis revealed significant DNA damage in both the mitochondria (cellular powerhouses) and nuclear DNA of sperm cells. This suggests that radiofrequency radiation can harm genetic material in reproductive cells even when other measures appear normal.

Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro.

Baohong Wang et al. · 2005

Scientists tested whether cell phone radiation (1.8 GHz) makes DNA more vulnerable to damage from toxic chemicals. While radiation alone caused no harm, it significantly increased genetic damage when combined with two specific chemicals, suggesting phone exposure may amplify other environmental toxins' effects.

Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation.

Zotti-Martelli L et al. · 2005

Italian researchers exposed blood cells to cell phone radiation (1800 MHz) for three hours. The radiation caused genetic damage that increased with longer exposure and higher power levels. Crucially, people showed dramatically different sensitivity levels, suggesting some individuals may be more vulnerable to EMF effects.

Non-thermal DNA breakage by mobile-phone radiation (1800MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro.

Diem E, Schwarz C, Adlkofer F, Jahn O, Rudiger H. · 2005

Researchers exposed human cells and rat cells to 1800 MHz mobile phone radiation at levels similar to what phones emit during calls. After 16 hours of exposure, both cell types showed DNA strand breaks (damage to genetic material). The damage occurred at non-thermal levels, meaning it wasn't caused by heating effects, and intermittent exposure patterns caused more damage than continuous exposure.

Oxidative StressNo Effects Found

Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields.

Hook et al. · 2004

Researchers exposed mouse immune cells to cell phone radiation at 835-847 MHz for over 20 hours to test whether radiofrequency signals cause oxidative stress (cellular damage from harmful molecules). They found no evidence that either FMCW or CDMA modulated signals at 0.8 W/kg caused oxidative stress, cellular damage, or changes in the cells' natural antioxidant defenses. The study suggests that cell phone-type radiation at these levels does not trigger the cellular stress responses that can lead to health problems.

Immune SystemNo Effects Found

1800 MHz radiofrequency (mobile phones, different global system for mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors.

Capri M et al. · 2004

Italian researchers exposed immune cells from both young and elderly people to 1800 MHz radiofrequency radiation (the type used by cell phones) at levels similar to what phones emit. They measured whether the radiation caused cell death, affected cellular energy production, or triggered stress responses. The study found no significant biological effects from the RF exposure across any of the measurements.

DNA & Genetic DamageNo Effects Found

Measurement of DNA damage and apoptosis in molt-4 cells after in vitro exposure to radiofrequency radiation.

Hook GJ et al. · 2004

Researchers exposed immune system cells (Molt-4 T lymphoblastoid cells) to cell phone radiation at various frequencies for up to 24 hours to test whether it causes DNA damage or triggers cell death. They found no statistically significant DNA damage or cell death compared to unexposed cells across all tested frequencies and modulation types. This suggests that cell phone radiation at these exposure levels may not directly harm cellular DNA or kill immune cells in laboratory conditions.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.