3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

Is 5G Safe? What the Research Actually Shows

Based on 574 peer-reviewed studies

Share:

5G technology has generated significant public concern about health effects. The topic has also attracted misinformation, making it difficult for people to understand what scientific research actually shows about 5G safety.

5G operates across different frequency bands—some similar to existing 4G networks, others using higher frequencies (millimeter waves) that are relatively new for widespread consumer exposure. This page focuses on what peer-reviewed research says about radiofrequency radiation at 5G frequencies.

We present the scientific evidence objectively, including both studies that raise concerns and those that find no effects, so you can make informed judgments based on actual research.

Key Research Findings

  • Limited research exists specifically on 5G millimeter wave frequencies
  • Lower-band 5G uses frequencies similar to well-studied 4G/LTE
  • Swedish 2025 report: 'need for more research' on higher 5G bands

Related Studies (574)

Diverse Radiofrequency Sensitivity and Radiofrequency Effects of Mobile or Cordless Phone near Fields Exposure in Drosophila melanogaster.

Geronikolou S et al. · 2014

Researchers exposed fruit flies (Drosophila) to radiation from both mobile phones (900 MHz) and cordless phones (1880 MHz) to study reproductive effects. They found that mobile phone radiation significantly reduced egg laying in the second generation of flies, while cordless phone radiation showed only limited effects. The study suggests that lower frequency radiation may cause stronger biological impacts.

Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

Burlaka A et al. · 2014

Ukrainian researchers exposed rats to ultra-high frequency electromagnetic radiation at levels permitted for radar station workers and studied the effects on cellular powerhouses called mitochondria. They found significant disruption in how mitochondria produce energy, particularly increased production of harmful free radicals and reduced oxygen delivery to cells. The damage was more severe when the radiation was delivered in pulses rather than continuously, suggesting that everyday wireless devices that pulse signals may pose greater risks to cellular health.

The effect of 2100 MHz radiofrequency radiation of a 3G mobile phone on the parotid gland of rats.

Aydogan F et al. · 2014

Researchers exposed rats to 3G mobile phone radiation (2100 MHz) for 6 hours daily and found significant damage to their parotid glands (the saliva-producing glands near your ears). The damage included changes to cell structure, blood vessels, and cellular components, with more severe effects after longer exposure periods (40 days versus 10 days). This matters because the parotid glands are located exactly where you hold your phone during calls.

Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by a BTS antenna model.

Akbari A, Jelodar G, Nazifi S. · 2014

Researchers exposed rats to radiofrequency waves from a cell tower model for 45 days and found that the radiation caused oxidative stress in brain tissue, reducing the activity of protective antioxidant enzymes. However, when rats were given vitamin C supplements during exposure, the vitamin significantly protected against this brain damage by maintaining healthy antioxidant levels. This suggests that radiofrequency radiation can harm brain cells through oxidative stress, but certain nutrients may offer protection.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release.

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low-frequency electromagnetic fields (ELF-EMF) for 60 minutes and found it dramatically increased sodium ion currents by 62.5%, which can disrupt normal brain cell function. However, when they treated the cells with melatonin (a hormone naturally produced by your body), it protected against these harmful effects. This suggests melatonin may serve as a natural defense mechanism against EMF-induced brain cell damage.

Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain.

Saikhedkar N et al. · 2014

Researchers exposed young rats to 900 MHz mobile phone radiation for 4 hours daily over 15 days and found significant brain damage in memory centers like the hippocampus. The exposed rats showed increased anxiety, poor learning ability, and cellular damage from oxidative stress (harmful molecules that damage cells). This suggests that prolonged mobile phone use may harm brain function and memory formation.

Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods

Burlaka A et al. · 2014

Ukrainian researchers exposed rats to ultra-high frequency electromagnetic radiation for 28 days at levels equivalent to maximum permitted doses for radar station workers. They found significant damage to mitochondria (the cell's power plants) in liver, heart, and blood vessel tissues, including disrupted energy production and increased harmful free radicals. This cellular damage was more severe when the radiation was delivered in pulses rather than continuously.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low frequency electromagnetic fields (ELF-EMF) for one hour and found that this exposure increased sodium channel activity in the cells by 62.5%. However, when the hormone melatonin was present, it prevented this electromagnetic field-induced change in brain cell function. This suggests melatonin may offer some protection against certain neurological effects of EMF exposure.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release.

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low-frequency electromagnetic fields (like those from power lines) and found the EMF exposure significantly increased electrical activity in neurons by 62.5%. However, when they treated the cells with melatonin, it protected against these EMF-induced changes. This suggests melatonin might help shield brain cells from electromagnetic field effects.

The effect of radiofrequency radiation generated by a Global System for Mobile Communications source on cochlear development in a rat model

Seckin E et al. · 2014

Researchers exposed pregnant rats and their newborn pups to cell phone radiation (900 and 1800 MHz) for one hour daily during critical developmental periods. While hearing tests showed no differences, microscopic examination revealed significant cellular damage in the inner ear, including increased cell death and abnormal cell structures. This suggests that developing hearing organs may be particularly vulnerable to radiofrequency radiation during crucial growth periods.

Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain

Saikhedkar N et al. · 2014

Researchers exposed young rats to 900 MHz cell phone radiation for 4 hours daily over 15 days to study brain effects. The exposed rats showed increased anxiety, poor learning and memory, damaged brain cells in key memory regions, and signs of cellular stress from harmful molecules called free radicals. This suggests that prolonged cell phone radiation exposure may damage the brain areas responsible for learning and memory.

Whole brain EEG synchronization likelihood modulated by long term evolution electromagnetic fields exposure.

Lv B, Su C, Yang L, Xie Y, Wu T · 2014

Researchers exposed 10 people to 4G LTE cell phone signals for 30 minutes while monitoring their brain activity with EEG sensors. They found that the radiofrequency exposure changed how different parts of the brain synchronized their electrical activity patterns. This suggests that wireless signals from modern smartphones can alter brain function even during short-term exposure.

Effects of the exposure to intermittent 1.8 GHz radio frequency electromagnetic fields on HSP70 expression and MAPK signaling pathways in PC12 cells.

Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E. · 2014

Italian scientists exposed nerve cells to cell phone radiation at twice safety limits for 24 hours. Only specific GSM signal patterns triggered cellular stress responses, while other signal types had no effect. This suggests the way phone signals are structured affects biological impact.

Long-term effects of 900 MHz radiofrequency radiation emitted from mobile phone on testicular tissue and epididymal semen quality.

Tas M et al. · 2014

Turkish researchers exposed male rats to 900 MHz cell phone radiation for 3 hours daily over one full year to study reproductive effects. While sperm count and movement weren't affected, the radiation caused structural damage to testicular tissue, including thinner protective layers and lower tissue health scores. This suggests that chronic cell phone radiation exposure may harm male reproductive organs even when basic sperm parameters appear normal.

Noninvasive Assessment of Metabolic Effects of Exposure to 900 MHz Electromagnetic Fields on Djungarian Hamsters ( Phodopus sungorus).

Taberski K et al. · 2014

Researchers exposed hamsters to 900 MHz electromagnetic fields (similar to 2G cell phone signals) at different power levels for one week each to study metabolic changes. At the highest exposure level (4 W/kg), hamsters showed reduced daytime metabolism, lower food consumption, and slightly elevated skin temperature, even though their core body temperature remained stable. This suggests that high-level radiofrequency exposure can alter basic metabolic processes in mammals.

Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage

Sannino A et al. · 2014

Researchers exposed human blood cells to radiofrequency radiation (similar to cell phone signals) for 20 hours, then subjected them to X-ray radiation. Surprisingly, the cells that received the RF pre-exposure showed significantly less genetic damage from the X-rays compared to cells that only received X-rays. This suggests that low-level RF exposure may trigger protective mechanisms that help cells resist subsequent DNA damage.

Circadian alterations of reproductive functional markers in male rats exposed to 1800-MHz radiofrequency field.

Qin F et al. · 2014

Researchers exposed male rats to cell phone radiation (1800 MHz) for 2 hours daily over 32 days and found it disrupted their natural body clocks and harmed reproductive function. The radiation reduced testosterone levels, decreased sperm production and movement, and interfered with the normal daily rhythms that regulate these processes. This suggests that the timing of EMF exposure throughout the day may influence how severely it affects male fertility.

Mobile Phone Radiation Alters Proliferation of Hepatocarcinoma Cells.

Ozgur E, Guler G, Kismali G, Seyhan N · 2014

Researchers exposed liver cancer cells to mobile phone radiation at levels typical of phone use (2 W/kg SAR) for up to 4 hours. The radiation decreased cell survival and caused DNA damage, with 1,800-MHz frequencies proving more harmful than 900-MHz. This suggests that the radiofrequency radiation from mobile phones can directly damage cells at exposure levels considered safe by current regulations.

Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

Koyama S et al. · 2014

Japanese researchers exposed immune cells called neutrophils to 2.45-GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) at levels up to 10 W/kg for up to 24 hours. They found no significant effects on the cells' ability to migrate toward threats or engulf harmful particles - two critical immune functions. This suggests that RF exposure at current safety limits may not impair these specific immune responses.

Modifying Effects of Low-Intensity Extremely High-Frequency Electromagnetic Radiation on Content and Composition of Fatty Acids in Thymus of Mice Exposed to X-Rays.

Gapeyev AB, Aripovsky AV, Kulagina TP. · 2014

Scientists exposed mice to 42.2 GHz electromagnetic radiation to test whether it could protect against X-ray damage to immune tissue. The electromagnetic exposure helped restore normal tissue chemistry and weight in the thymus gland, suggesting certain frequencies might aid immune system recovery from radiation injury.

Long term and excessive use of 900 MHz radiofrequency radiation alter microrna expression in brain.

Dasdag S et al. · 2014

Turkish researchers exposed rats to cell phone radiation (900 MHz) for 3 hours daily over an entire year and found it altered microRNA in brain tissue. MicroRNAs are tiny molecules that control gene activity and play crucial roles in brain function, cell growth, and death. This study demonstrates that chronic radiofrequency exposure can disrupt these fundamental cellular control mechanisms in the brain.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.