Salunke BP, Umathe SN, Chavan JG. · 2014
Researchers exposed mice to 50 Hz magnetic fields from power lines for 8 hours daily up to 120 days. The mice developed obsessive-compulsive behaviors and showed increased nitric oxide levels in brain regions controlling behavior, suggesting power-frequency fields can alter brain chemistry.
Reale M et al. · 2014
Researchers exposed human brain cells to 50 Hz magnetic fields from household electricity and found they triggered harmful oxidative stress. The cells' natural defenses initially compensated, but failed when combined with other stressors, suggesting everyday EMF exposure may increase brain vulnerability to damage.
Pelletier SJ et al. · 2014
Researchers exposed brain cells to direct current electric fields at different intensities to see how they would respond. They found that neurons grew longer and changed shape, immune cells called microglia became more inflammatory, and support cells called astrocytes also changed their structure. This study helps explain how electric fields can directly alter brain cell behavior and function.
Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. · 2014
Researchers exposed newborn rat nerve cells to 50 Hz electromagnetic fields (power line frequency) for two hours. The exposure increased production of BDNF, a protein essential for nerve growth and brain health, by triggering calcium flow into cells and activating specific cellular pathways.
Komaki A, Khalili A, Salehi I, Shahidi S, Sarihi A. · 2014
Researchers exposed rats to 50Hz electromagnetic fields from power lines for 90 days and found enhanced brain connections in the hippocampus, the memory center. This suggests chronic exposure to everyday electrical fields may alter how our brains process and store information.
Kantar Gok D et al. · 2014
Researchers exposed rats to electric fields from power lines for up to four weeks. The strongest exposure significantly impaired the brain's ability to detect sound changes, a function crucial for attention and learning, while also causing harmful cellular damage in brain tissue.
Hernádi L, László JF. · 2014
Researchers exposed snails to a static magnetic field for 30 minutes and tested their pain response using a hot plate test. The magnetic field exposure significantly altered the snails' response time to heat by up to 47%, affecting brain chemicals involved in pain perception including serotonin and opioid systems. This demonstrates that magnetic fields can directly influence nervous system function and pain processing in living organisms.
Gao X, Wang X, Chen F, Qi H, Wang X, Ming D, Zhou P. · 2014
Chinese researchers exposed 10 people to extremely low frequency magnetic fields (1 Hz pulses at 10 milliTesla) for 20 minutes and measured their brain activity using EEG. They found significant changes in brainwave patterns and slower cognitive processing compared to a sham exposure group. This demonstrates that even brief exposure to pulsed magnetic fields can measurably alter brain function.
Duan Y, Wang Z, Zhang H, He Y, Fan R, Cheng Y, Sun G, Sun X. · 2014
Researchers exposed mice to 50 Hz magnetic fields (the same frequency as power lines) for 28 days and found significant brain changes in the hippocampus, a region critical for memory and learning. The exposure disrupted brain chemistry by increasing glutamate levels and damaging cellular signaling pathways that are essential for proper brain function. Importantly, the study also showed that these harmful effects could be reversed with a natural antioxidant treatment.
Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. · 2014
Researchers exposed fruit flies to 50 Hz magnetic fields (the same frequency as power lines) at 0.5 milliTesla for 48 hours and tracked their development and behavior. The magnetic field exposure shortened development time, increased survival rates, but significantly reduced the flies' movement and activity levels. This study demonstrates that extremely low frequency magnetic fields can alter both biological development and nervous system function in living organisms.
Ben Yakir-Blumkin M, Loboda Y, Schächter L, Finberg JP. · 2014
Researchers exposed rat brain neurons to weak static magnetic fields (50 gauss) for seven days and found these fields provided significant protection against cell death. The magnetic field exposure reduced neuron death by 57% when cells were exposed to a toxic chemical, and decreased multiple markers of cellular damage by 40-80%. This suggests static magnetic fields might influence brain cell survival through changes in calcium channels.
Afrasiabi A et al. · 2014
Researchers exposed brain tissue samples from sheep to electromagnetic fields at power line frequencies (50-230 Hz) and found that certain field strengths reduced the activity of acetylcholinesterase, an enzyme that breaks down the brain chemical acetylcholine. This enzyme is crucial for memory, learning, and cognitive function. The findings suggest that EMF exposure could potentially disrupt normal brain chemistry by affecting how neurotransmitters are regulated.
Qin F, Yuan H, Nie J, Cao Y, Tong J. · 2014
Researchers exposed mice to cell phone radiation at 1800 MHz (the frequency used by GSM networks) for either 30 or 120 minutes daily over 30 days. Mice exposed for 120 minutes showed significant learning and memory problems, along with brain chemistry changes indicating oxidative stress. When researchers gave the mice nano-selenium supplements, the cognitive damage was largely prevented.
Narayanan SN et al. · 2014
Researchers exposed adolescent rats to cell phone radiation (900 MHz) for one hour daily over four weeks and found significant brain damage. The radiation caused oxidative stress (cellular damage from harmful molecules) in all brain regions tested, with different areas showing varying degrees of harm. The rats also displayed altered behavior, suggesting the brain damage had functional consequences.
Motawi TK, Darwish HA, Moustafa YM, Labib MM. · 2014
Researchers exposed young and adult rats to cell phone radiation (SAR 1.13 W/kg) for 2 hours daily over 60 days and found significant brain damage. The radiation caused oxidative stress (cellular damage from harmful molecules), triggered programmed cell death, and led to visible neuronal damage, with young rats showing particularly affected brain development. This suggests that chronic cell phone exposure may harm brain tissue through multiple biological pathways.
Hu S et al. · 2014
Researchers exposed rats to high-power microwave radiation, which caused memory problems and brain damage. However, rats given the dietary supplement Kang-fu-ling were protected from these harmful effects through antioxidant action, suggesting certain supplements might help shield the brain from microwave radiation damage.
Hatice Ş. Gürler et al. · 2014
Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 30 days and measured damage to DNA and proteins in their brains. The radiation caused significant DNA damage in both brain tissue and blood, while also increasing harmful protein changes in the blood. Interestingly, rats given garlic supplements showed protection against these damaging effects.
Gürler HS, Bilgici B, Akar AK, Tomak L, Bedir A. · 2014
Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 30 days and measured DNA damage in their brains and blood. The radiation caused significant genetic damage, indicated by increased levels of 8-OHdG (a marker of DNA oxidation) in both brain tissue and blood plasma. Interestingly, rats given garlic extract were protected from this DNA damage, suggesting antioxidants may help counter EMF-induced cellular harm.
Salunke BP, Umathe SN, Chavan JG · 2014
Researchers exposed mice to 50 Hz magnetic fields (power line frequency) for 8 hours daily up to 120 days. This caused obsessive-compulsive behaviors by increasing nitric oxide levels in brain regions. The study suggests household electrical frequencies may affect brain chemistry and behavior.
Reale M et al. · 2014
Scientists exposed human brain cells to 50 Hz electromagnetic fields from power lines for 24 hours. The EMF exposure caused cellular damage and weakened the cells' natural defense systems, especially when cells were already stressed, suggesting potential links to brain degeneration.
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B · 2014
Researchers exposed gerbils to power line frequency magnetic fields after stroke-like brain damage. The magnetic field exposure helped reduce brain oxidative stress caused by the stroke, with stress levels returning nearly to normal by day 14, suggesting potential protective effects against brain injury.
Manikonda PK et al. · 2014
Researchers exposed young rats to 50 Hz magnetic fields from power lines for 90 days and found significant brain damage from oxidative stress. Higher magnetic field levels caused more harm across multiple brain regions, including areas controlling memory and movement, suggesting potential neurological effects.
Kantar Gok D et al. · 2014
Researchers exposed rats to 50 Hz electric fields (like those from power lines) for up to four weeks. High-intensity exposure significantly reduced brain responses that help detect sound changes, while increasing brain damage markers. This suggests electric field exposure may impair auditory processing abilities.
Deng B et al. · 2014
Chinese researchers exposed rats to electromagnetic pulse (EMP) radiation and found it caused brain damage, including neuronal death and learning problems. When they treated the rats with sevoflurane (an anesthetic gas), it protected against this brain damage by reducing oxidative stress and preventing brain cell death. This suggests that electromagnetic pulses can harm brain function, but also that protective treatments might be possible.
Shafiei SA, Firoozabadi SM, Tabatabaie KR, Ghabaee M. · 2014
Researchers exposed different areas of the brain to extremely low-frequency magnetic fields (3-45 Hz) at various intensities and measured changes in brain wave patterns using EEG. They found significant alterations in brain electrical activity, particularly reductions in alpha waves in frontal and central brain regions. The findings suggest these magnetic fields can measurably alter brain function, which the researchers propose could be developed into therapeutic protocols.