3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,644 studies in Brain & Nervous System

Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field

Campisi A et al. · 2010

Italian researchers exposed brain cells called astrocytes to 900 MHz microwave radiation (similar to cell phone frequencies) for up to 20 minutes and measured cellular damage. They found that modulated signals caused significant increases in harmful free radicals and DNA fragmentation, while continuous waves did not produce these effects. The study demonstrates that even brief exposures to low-intensity electromagnetic fields can damage brain cells at the molecular level.

Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate

Wang Z, Che PL, Du J, Ha B, Yarema KJ. · 2010

Researchers exposed cells with Parkinson's disease characteristics to static magnetic fields and found the fields produced effects remarkably similar to a promising Parkinson's drug candidate called ZM241385. The magnetic fields altered calcium levels, energy production, and other cellular processes in ways that could potentially benefit Parkinson's patients. This suggests magnetic field therapy might offer a non-invasive treatment approach for neurological disorders.

Effects of low-field magnetic stimulation on brain glucose metabolism

Volkow ND et al. · 2010

Researchers exposed 15 healthy people to magnetic fields inside MRI machines and measured brain activity using glucose metabolism scans. They found that stronger magnetic field exposure caused measurable decreases in brain activity in specific regions, with the strongest fields producing the largest reductions. This demonstrates that magnetic fields can directly alter how the brain functions, even without people feeling any immediate effects.

Extremely low-frequency electromagnetic fields differentially regulate estrogen receptor-alpha and -beta expression in the rat olfactory bulb.

Reyes-Guerrero G et al. · 2010

Researchers exposed adult rats to extremely low frequency (ELF) electromagnetic fields and measured changes in estrogen receptor genes in the olfactory bulb, the brain region responsible for smell. They found that EMF exposure altered estrogen receptor activity in female rats during different phases of their reproductive cycle, but had no effect on male rats. This suggests that EMF exposure may affect hormonal signaling in the brain differently between sexes.

Mobile phone emission modulates inter-hemispheric functional coupling of EEG alpha rhythms in elderly compared to young subjects.

Vecchio F et al. · 2010

Researchers exposed 16 elderly and 5 young adults to GSM mobile phone emissions for 45 minutes while measuring their brain waves with EEG. They found that elderly subjects showed significantly increased synchronization between brain hemispheres in the alpha frequency range (8-12 Hz) during phone exposure, while young subjects showed less pronounced effects. This suggests that aging brains may be more susceptible to electromagnetic field interference from mobile phones.

Exposure to radio-frequency electromagnetic fields and behavioural problems in Bavarian children and adolescents.

Thomas S, Heinrich S, von Kries R, Radon K · 2010

German researchers studied over 3,000 children and teens, measuring their actual radiofrequency EMF exposure from cell towers and wireless networks over 24 hours using personal dosimeters. They found that adolescents with the highest RF exposure levels were more than twice as likely to show behavioral problems, particularly conduct issues like aggression or rule-breaking. The exposure levels were well below safety limits, suggesting behavioral effects may occur at everyday environmental levels.

Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats.

Narayanan SN et al. · 2010

Researchers exposed rats to cell phone radiation by placing an active phone in their cages and making 50 missed calls daily for four weeks. The exposed rats showed impaired learning and memory behavior, taking less time to enter dangerous areas they had previously learned to avoid. Brain tissue examination revealed structural damage in the hippocampus, the brain region crucial for memory formation.

Principal component analysis of the P600 waveform: RF and gender effects.

Maganioti AE et al. · 2010

Researchers studied how mobile phone radiation affects brain activity patterns during memory tasks in 39 healthy adults. They found that radiofrequency exposure at mobile phone frequencies (900 MHz and 1,800 MHz) altered normal gender differences in brain electrical activity, particularly affecting how men and women's brains processed information differently. This suggests that mobile phone radiation can modify fundamental patterns of brain function.

Exposure to wireless phone emissions and serum β-trace protein

Hardell L, Söderqvist F, Carlberg M, Zetterberg H, Mild KH · 2010

Researchers measured β-trace protein (a brain-produced protein that helps regulate sleep) in 62 young adults and found that people who used wireless phones longer had lower levels of this protein in their blood. When participants were exposed to cell phone radiation for 30 minutes in a lab setting, their β-trace protein didn't change significantly, but unexposed participants showed increased levels over the same time period.

Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study.

Vorobyov V, Janać B, Pesić V, Prolić Z. · 2010

Researchers monitored brain activity in rats exposed to low-level microwave radiation (similar to cell phone signals) for 10 minutes daily over five days. They found that repeated exposures disrupted the normal communication patterns between two key brain regions - the cortex (responsible for thinking) and hypothalamus (which controls hormones and basic body functions). The effects got stronger with each day of exposure, suggesting the brain changes accumulate over time.

The effect of mobile phone on the number of Purkinje cells: A stereological study.

Rağbetlı MC et al. · 2010

Researchers exposed pregnant mice to mobile phone radiation at levels similar to what humans experience (0.95 W/kg SAR) and found a significant decrease in Purkinje cells in the developing cerebellum of offspring. Purkinje cells are critical neurons that control movement, balance, and coordination. This study suggests that prenatal exposure to mobile phone radiation may affect brain development in areas responsible for motor function.

Confirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results.

Grigoriev YG et al. · 2010

Russian researchers exposed rats to microwave radiation at levels similar to what cell phones emit (2450 MHz frequency) for 7 hours daily over 30 days. They found the radiation triggered immune system changes in brain tissue, causing the body to produce antibodies against its own brain cells. This suggests that even low-level microwave exposure may cause autoimmune reactions where the immune system mistakenly attacks healthy tissue.

Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep.

Danker-Hopfe H, Dorn H, Bahr A, Anderer P, Sauter C. · 2010

German researchers exposed 30 healthy men to cell phone radiation during sleep for multiple nights. While some minor statistical differences in sleep patterns occurred, these changes were minimal and didn't indicate meaningful sleep disruption, suggesting current safety limits don't harm sleep quality.

Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

Campisi A et al. · 2010

Italian researchers exposed brain support cells (astrocytes) to cell phone-frequency radiation (900MHz) at levels similar to what phones emit. After just 20 minutes of exposure to modulated signals, the cells showed increased cellular damage and DNA fragmentation, while continuous waves caused no effects. This suggests that the pulsing pattern of wireless signals, not just their intensity, may be what causes biological harm.

Effects of low-field magnetic stimulation on brain glucose metabolism.

Volkow ND et al. · 2010

Researchers exposed 15 healthy people to pulsed magnetic fields (920 Hz) while measuring brain glucose metabolism using PET scans. They found that areas of the brain exposed to stronger electric fields showed decreased metabolic activity compared to unexposed areas. The stronger the field, the greater the reduction in brain metabolism, suggesting that electromagnetic fields can directly alter brain function.

Browse by Health Effect