3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

The effect of 2100 MHz radiofrequency radiation of a 3G mobile phone on the parotid gland of rats.

Aydogan F et al. · 2014

Researchers exposed rats to 3G mobile phone radiation (2100 MHz) for 6 hours daily and found significant damage to their parotid glands (the saliva-producing glands near your ears). The damage included changes to cell structure, blood vessels, and cellular components, with more severe effects after longer exposure periods (40 days versus 10 days). This matters because the parotid glands are located exactly where you hold your phone during calls.

Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by a BTS antenna model.

Akbari A, Jelodar G, Nazifi S. · 2014

Researchers exposed rats to radiofrequency waves from a cell tower model for 45 days and found that the radiation caused oxidative stress in brain tissue, reducing the activity of protective antioxidant enzymes. However, when rats were given vitamin C supplements during exposure, the vitamin significantly protected against this brain damage by maintaining healthy antioxidant levels. This suggests that radiofrequency radiation can harm brain cells through oxidative stress, but certain nutrients may offer protection.

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats.

Mahdavi SM, Sahraei H, Yaghmaei P, Tavakoli H. · 2014

Researchers exposed male rats to extremely low frequency electromagnetic fields at 1 Hz and 5 Hz to study effects on stress hormones and behavior. They found that these exposures altered stress hormone levels (increasing ACTH while decreasing noradrenaline) and changed glucose metabolism differently depending on the frequency used. The study demonstrates that even very low frequency EMF exposures can disrupt the body's stress response system in measurable ways.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release.

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low-frequency electromagnetic fields (ELF-EMF) for 60 minutes and found it dramatically increased sodium ion currents by 62.5%, which can disrupt normal brain cell function. However, when they treated the cells with melatonin (a hormone naturally produced by your body), it protected against these harmful effects. This suggests melatonin may serve as a natural defense mechanism against EMF-induced brain cell damage.

Autism-relevant social abnormalities in mice exposed perinatally to extremely low frequency electromagnetic fields.

Alsaeed I et al. · 2014

Researchers exposed pregnant mice and their newborn pups to extremely low frequency electromagnetic fields (the type emitted by power lines and electrical wiring) during a critical developmental window. The exposed male mice grew up showing significant social deficits similar to those seen in autism spectrum disorders, including reduced interest in other mice and decreased exploratory behavior, while their physical abilities remained normal.

(2014) The Compound Chinese Medicine “Kang Fu Ling” Protects against High Power Microwave-Induced Myocardial Injury.

Zhang X, Gao Y, Dong J, Wang S, Yao B, et al. · 2014

Researchers exposed 100 rats to high-power microwave radiation and found significant heart damage, including abnormal heart rhythms, cellular swelling, and damaged mitochondria (the cell's power plants). When they treated some rats with a Chinese herbal compound called Kang Fu Ling, the heart damage was largely prevented. This suggests that microwave radiation can harm the cardiovascular system at the cellular level, but protective compounds may help mitigate these effects.

Analysis of rat testicular proteome following 30-days exposure to 900 MHz electromagnetic field radiation.

Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S. · 2014

Researchers exposed male rats to cell phone radiation (900 MHz) for 1-4 hours daily over 30 days, then analyzed protein changes in testicular tissue. They found significant alterations in 13 proteins, including heat shock proteins and antioxidant enzymes that typically respond to cellular stress. These changes suggest that even moderate cell phone radiation exposure can trigger stress responses in reproductive tissue without heating effects.

Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain.

Saikhedkar N et al. · 2014

Researchers exposed young rats to 900 MHz mobile phone radiation for 4 hours daily over 15 days and found significant brain damage in memory centers like the hippocampus. The exposed rats showed increased anxiety, poor learning ability, and cellular damage from oxidative stress (harmful molecules that damage cells). This suggests that prolonged mobile phone use may harm brain function and memory formation.

Pathological effects of prenatal exposure to a 900 MHz electromagnetic field on the 21-day-old male rat kidney.

Odacı E et al. · 2014

Turkish researchers exposed pregnant rats to cell phone radiation (900 MHz) for one hour daily during late pregnancy, then examined kidney tissue in the male offspring at three weeks old. The exposed pups showed significant kidney damage including tissue degeneration, cyst formation, and blood vessel loss, along with elevated oxidative stress markers. This suggests that prenatal cell phone radiation exposure may cause lasting kidney damage through oxidative stress mechanisms.

Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario.

Kumar S, Nirala JP, Behari J, Paulraj R. · 2014

Researchers exposed male rats to electromagnetic radiation from 3G mobile phones to study effects on reproductive health. They found significant damage including reduced sperm count, DNA damage in sperm cells, and decreased testicular weight. The findings suggest that mobile phone radiation may harm male fertility.

Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

Ghazizadeh V, Nazıroğlu M. · 2014

Researchers exposed brain tissue from epileptic rats to Wi-Fi radiation for one hour. The exposure triggered harmful calcium buildup and cell death in brain regions controlling memory and pain. This suggests Wi-Fi may worsen neurological conditions by disrupting normal brain cell function.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low frequency electromagnetic fields (ELF-EMF) for one hour and found that this exposure increased sodium channel activity in the cells by 62.5%. However, when the hormone melatonin was present, it prevented this electromagnetic field-induced change in brain cell function. This suggests melatonin may offer some protection against certain neurological effects of EMF exposure.

Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release.

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. · 2014

Researchers exposed rat brain cells to extremely low-frequency electromagnetic fields (like those from power lines) and found the EMF exposure significantly increased electrical activity in neurons by 62.5%. However, when they treated the cells with melatonin, it protected against these EMF-induced changes. This suggests melatonin might help shield brain cells from electromagnetic field effects.

Sensory transduction of weak electromagnetic fields: role of glutamate neurotransmission mediated by NMDA receptors.

Frilot C 2nd, Carrubba S, Marino AA. · 2014

Researchers studied how the brain detects weak electromagnetic fields by examining brain waves in awake versus anesthetized rats. They found that rats could detect EMF signals when awake, but this ability was blocked by ketamine (an anesthetic that interferes with brain communication pathways) but not by xylazine (a different type of anesthetic). This suggests the brain has a previously unrecognized ability to sense electromagnetic fields through specific neural pathways.

Neuroprotective effect of weak static magnetic fields in primary neuronal cultures

Ben Yakir-Blumkin M, Loboda Y, Schächter L, Finberg JP · 2014

Researchers exposed brain cells from rats to weak static magnetic fields (50 Gauss) for seven days and found the fields dramatically protected neurons from programmed cell death. The magnetic field exposure reduced cell death by 57% and significantly decreased multiple markers of cellular damage. This suggests that certain magnetic field exposures might actually protect brain cells rather than harm them.

The effect of radiofrequency radiation generated by a Global System for Mobile Communications source on cochlear development in a rat model

Seckin E et al. · 2014

Researchers exposed pregnant rats and their newborn pups to cell phone radiation (900 and 1800 MHz) for one hour daily during critical developmental periods. While hearing tests showed no differences, microscopic examination revealed significant cellular damage in the inner ear, including increased cell death and abnormal cell structures. This suggests that developing hearing organs may be particularly vulnerable to radiofrequency radiation during crucial growth periods.

Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain

Saikhedkar N et al. · 2014

Researchers exposed young rats to 900 MHz cell phone radiation for 4 hours daily over 15 days to study brain effects. The exposed rats showed increased anxiety, poor learning and memory, damaged brain cells in key memory regions, and signs of cellular stress from harmful molecules called free radicals. This suggests that prolonged cell phone radiation exposure may damage the brain areas responsible for learning and memory.

Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

Kesari KK, Meena R, Nirala J, Kumar J, Verma HN. · 2014

Researchers exposed young rats to 3G cell phone radiation for 2 hours daily over 60 days and examined their brain tissue. The study found significant DNA damage, increased cell death, and activation of stress response pathways in the brain. These findings suggest that prolonged cell phone exposure may harm brain cells through oxidative stress and cellular damage mechanisms.

The effects of mobile phones on apoptosis in cerebral tissue: an experimental study on rats.

Yilmaz A et al. · 2014

Researchers exposed rats to mobile phone radiation at typical usage levels for four weeks, then examined brain tissue for signs of cell death (apoptosis). They found significantly increased levels of proteins that control cell death in the exposed rats compared to unexposed controls. This suggests that mobile phone radiation may trigger cellular stress responses in brain tissue at exposure levels similar to everyday phone use.

The relationship between NMDA receptors and microwave induced learning and memory impairment: a long term observation on Wistar rats.

Wang H et al. · 2014

Chinese researchers exposed rats to microwave radiation at levels similar to some wireless devices and tracked their brain function for 18 months. The exposed rats showed persistent problems with spatial learning and memory, along with damage to brain structures and disrupted brain chemistry. This suggests that microwave exposure can cause lasting cognitive impairment through multiple biological mechanisms.

Effects of the exposure to intermittent 1.8 GHz radio frequency electromagnetic fields on HSP70 expression and MAPK signaling pathways in PC12 cells.

Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E. · 2014

Italian scientists exposed nerve cells to cell phone radiation at twice safety limits for 24 hours. Only specific GSM signal patterns triggered cellular stress responses, while other signal types had no effect. This suggests the way phone signals are structured affects biological impact.

Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves.

Sharma A, Sisodia R, Bhatnagar D, Saxena VK. · 2014

Researchers exposed mice to 10 GHz microwave radiation for two hours daily over 30 days, then tested their memory using a water maze. Exposed mice took significantly longer to learn and remember locations, suggesting microwave exposure may impair memory formation and learning ability.

2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress.

Shahin S, Mishra V, Singh SP, Chaturvedi CM · 2014

Researchers exposed male mice to 2.45-GHz microwave radiation (the same frequency used by Wi-Fi and microwaves) for 2 hours daily over 30 days at very low power levels. The exposed mice showed significant decreases in sperm count and viability, reduced testosterone levels, and damaged reproductive tissue. The study suggests these effects occur through oxidative stress, where radiation generates harmful free radicals that damage cells.

Reduction of Phosphorylated Synapsin I (Ser-553) Leads to Spatial Memory Impairment by Attenuating GABA Release after Microwave Exposure in Wistar Rats.

Qiao S et al. · 2014

Researchers exposed rats to microwave radiation at 30 mW/cm² for 5 minutes and found it impaired their spatial memory and learning abilities. The study revealed that this radiation disrupted a key brain protein called synapsin I, which controls the release of GABA (a neurotransmitter essential for proper brain function). This disruption in brain chemistry provides a biological mechanism explaining how microwave exposure can affect cognitive performance.

Browse by Health Effect