3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes.

Tsoy A et al. · 2019

Researchers exposed brain cells called astrocytes to 918 MHz radiofrequency radiation (similar to cell phone signals) along with proteins that cause Alzheimer's disease damage. Surprisingly, they found that the RF exposure actually reduced harmful oxidative stress and protected the cells from damage caused by the Alzheimer's proteins. The study suggests that certain RF frequencies might have therapeutic potential for treating Alzheimer's disease.

Effects of single- and hybrid-frequency extremely low-frequency electromagnetic field stimulations on long-term potentiation in the hippocampal Schaffer collateral pathway.

Zheng Y, Ma XX, Dong L, Gao Y, Tian L. · 2019

Researchers exposed rat brain tissue to 15 Hz magnetic fields at medical device levels to study effects on brain connections. The magnetic fields significantly disrupted normal brain signaling that supports learning and memory, showing common electromagnetic frequencies can interfere with basic brain functions.

Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats.

Li Y, Zhang Y, Wang W, Zhang Y, Yu Y, Cheing GL, Pan W. · 2019

Researchers exposed rats with chemically-induced dementia to pulsed magnetic fields (10 mT at 20 Hz) and found dramatic improvements in learning and memory abilities. The treated rats showed 66% faster escape times in maze tests and 55% shorter swimming distances compared to untreated dementia rats. The magnetic field exposure also increased expression of genes linked to brain growth and repair, suggesting the fields may help protect against cognitive decline.

A comparative study on influences of static electric field and power frequency electric field on cognition in mice.

Di G, Kim H, Xu Y, Kim J, Gu X. · 2019

Researchers exposed mice to extremely strong electric fields (35,000 volts per meter) for 49 days to compare how static fields versus power frequency fields affect learning and memory. They found that static electric fields had no effect on cognitive ability, while power frequency electric fields actually improved the mice's performance on memory tests after 33 days of exposure.

Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain

Alkis ME et al. · 2019

Turkish researchers exposed rats to cell phone radiation at three different frequencies (900, 1800, and 2100 MHz) for 2 hours daily over 6 months to study brain effects. They found increased DNA damage and oxidative stress in brain tissue across all frequency groups compared to unexposed control rats. This suggests that chronic exposure to the radiofrequency radiation emitted by mobile phones may harm brain cells at the genetic level.

Brain & Nervous SystemNo Effects Found

Impact of Long-Term RF-EMF on Oxidative Stress and Neuroinflammation in Aging Brains of C57BL/6 Mice.

Jeong YJ et al. · 2018

Researchers exposed middle-aged mice to cell phone-level radiofrequency radiation (1950 MHz) for 8 months to see if it worsened age-related brain damage. While the aging mice showed expected increases in brain oxidative stress, DNA damage, and inflammation markers, the RF exposure didn't make any of these problems worse. The study suggests that long-term exposure to this type of radiation may not accelerate brain aging processes.

Low Frequency Stimulation Reverses the Kindling-Induced Impairment of Learning and Memory in the Rat Passive-avoidance Test.

Esmaeilpour K et al. · 2018

Researchers studied whether low-frequency electrical stimulation (1 Hz) could help reverse memory problems caused by seizures in rats. They found that applying brief electrical stimulation treatments after seizures not only restored learning and memory abilities but also protected brain cells from seizure-related damage. This suggests that controlled electrical stimulation might offer a therapeutic approach for treating cognitive problems in epilepsy patients.

Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice.

Pandey N, Giri S. · 2018

Researchers exposed male mice to 900 MHz radiofrequency radiation (similar to cell phone signals) for 6 hours daily over 35 days and found significant damage to sperm-producing cells, including DNA damage, reduced sperm count, and abnormal sperm shape. However, when mice also received melatonin supplements, these harmful effects were largely prevented or reversed. This suggests that RF radiation can impair male fertility, but antioxidants like melatonin may offer protection.

Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets.

Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. · 2018

Researchers exposed rats to Wi-Fi radiation (2.4 GHz) for 4 hours daily over 45 days and found it significantly impaired the pancreas's ability to produce insulin while causing elevated blood sugar levels. The Wi-Fi exposure also increased harmful oxidative stress in pancreatic tissue and reduced the body's natural antioxidant defenses. This suggests that chronic Wi-Fi radiation exposure may interfere with blood sugar regulation, a critical function for metabolic health.

A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence.

Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. · 2018

Turkish researchers exposed adolescent male rats to 900 MHz electromagnetic fields (the frequency used by many cell phones) for one hour daily throughout their entire teenage development period. They found significant nerve damage in the sciatic nerve, including structural changes and increased oxidative stress markers that indicate cellular damage. This suggests that regular EMF exposure during critical developmental periods may harm the peripheral nervous system.

Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model.

Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. · 2018

Researchers exposed rats to Wi-Fi radiation (2.45 GHz) continuously for 10 weeks to study its effects on cellular defense systems. They found that Wi-Fi exposure significantly weakened the animals' antioxidant defenses, reducing the activity of key protective enzymes that normally protect cells from damage. This suggests that chronic Wi-Fi exposure may compromise the body's natural ability to defend against cellular stress.

Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol.

Comelekoglu U et al. · 2018

Turkish researchers exposed rats to 1800 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over four weeks and found significant damage to the sciatic nerve, which controls leg function. The nerve damage included slower electrical signals, increased oxidative stress, and physical deterioration of nerve fibers. However, when rats were also given paricalcitol (a vitamin D derivative), the nerve damage was partially prevented.

Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats.

Martínez-Sámano J et al. · 2018

Researchers exposed rats to extremely low frequency electromagnetic fields (the type emitted by power lines and electrical wiring) for 21 days and found it triggered the same stress response as physical restraint stress. The EMF exposure altered brain chemistry, specifically changing fat composition and increasing oxidative damage (cellular wear and tear) in different brain regions.

RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD rat.

Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018

Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.

miRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field.

Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. · 2018

Researchers exposed rats to 50 Hz magnetic fields for 60 days and found significant changes in brain molecules that control gene expression. Young female rats showed the most dramatic effects, with altered patterns in both brain tissue and blood, suggesting chronic EMF exposure may disrupt normal brain function.

Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field.

Dinčić M et al. · 2018

Researchers exposed rats to weak static magnetic fields (1 mT) for 50 days and examined brain enzyme activity. They found that magnetic field exposure significantly increased the activity of key brain enzymes involved in nerve communication and energy metabolism, while also causing oxidative stress damage. These enzymes play important roles in neurological diseases, suggesting that even weak magnetic fields can alter brain chemistry.

Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease.

Bobkova NV et al. · 2018

Russian researchers exposed Alzheimer's mice to extremely weak magnetic fields for 4 hours daily over 10 days. The treatment reduced toxic brain plaques and improved memory in some mice, suggesting specific magnetic frequencies might help clear harmful proteins in early neurodegenerative diseases.

Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposure.

Akbarnejad Z et al. · 2018

Researchers injected rats with Alzheimer's-causing proteins and then exposed them to magnetic fields (50 Hz at 10 milliTesla) for 14 days. The magnetic field exposure significantly improved memory and learning abilities in the Alzheimer's rats, as measured by maze tests. This suggests that certain electromagnetic fields might help protect brain function in neurodegenerative diseases.

The Protective Effect of Autophagy on DNA Damage in Mouse Spermatocyte-Derived Cells Exposed to 1800 MHz Radiofrequency Electromagnetic Fields.

Li R et al. · 2018

Researchers exposed mouse sperm cells to cell phone-level radiofrequency radiation (4 W/kg SAR) for 24 hours and found it caused DNA damage. However, the cells activated a protective mechanism called autophagy (cellular self-cleaning) that helped reduce this damage. When researchers blocked this protective response, DNA damage increased significantly.

Probing the Origins of 1,800 MHz Radio Frequency Electromagnetic Radiation Induced Damage in Mouse Immortalized Germ Cells and Spermatozoa in vitro.

Houston BJ, Nixon B, King BV, Aitken RJ, De Iuliis GN. · 2018

Researchers exposed mouse sperm to cell phone radiation (1.8 GHz) for 3-4 hours at low power. The radiation damaged sperm DNA, reduced sperm movement, and created harmful molecules in cell energy centers. This provides biological evidence for how wireless signals might affect male fertility.

Protective properties of Myrtus communis extract against oxidative effects of extremely low-frequency magnetic fields on rat plasma and hemoglobin.

Seif F, Bayatiani MR, Ansarihadipour H, Habibi G, Sadelaji S · 2018

Researchers exposed rats to magnetic fields from power lines for 2 hours daily over a month, finding significant blood damage and reduced antioxidant defenses. Myrtle plant extract prevented these harmful effects, suggesting magnetic field exposure causes oxidative stress but natural compounds may offer protection.

Impact of Static Magnetic Field on the Antioxidant Defence System of Mice Fibroblasts.

Glinka M et al. · 2018

Polish researchers exposed mouse skin cells (fibroblasts) to static magnetic fields ranging from 100 to 700 milliTesla to see how it affected their antioxidant defense systems. They found that the magnetic fields actually decreased the activity of two key antioxidant enzymes but didn't cause oxidative stress or damage the cells' energy production. This suggests static magnetic fields may have mild antioxidant-like effects rather than harmful oxidative effects.

Browse by Health Effect