3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Topics

Brain & Nervous System

5 min read
Share:
Key Finding: 78% of 1,644 studies on brain & nervous system found biological effects from EMF exposure.

Of 1,644 studies examining brain & nervous system, 78% found measurable biological effects from EMF exposure.

Lowest Documented Effect

Research found effects on brain & nervous system at exposures as low as:

Study Exposure Level in ContextA logarithmic scale showing exposure levels relative to Building Biology concern thresholds and regulatory limits.Study Exposure Level in Context0.0000000043Extreme Concern5 mGFCC Limit2,000 mGEffects observed in the No Concern range (Building Biology)FCC limit is 465,116,279,070x higher than this exposure level

Research Overview

  • -When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research.
  • -Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
  • -This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health. This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

Henry Lai's comprehensive analysis of peer-reviewed research, 91% of studies examining extremely low frequency fields found biological effects on the nervous system, while 72% of radiofrequency studies showed similar impacts.

The scientific evidence demonstrates that radiofrequency electromagnetic fields from mobile phones and wireless devices produce measurable effects on nervous system function and cellular processes in the brain.

Source: BioInitiative Working Group. BioInitiative Report: A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Radiation. Edited by Cindy Sage and David O. Carpenter, BioInitiative, 2012, updated 2020. www.bioinitiative.org

Research Statistics by EMF Type

EMF TypeStudiesShowing EffectsPercentage
ELF22920891.00%
RF30522272.00%

Source: Dr. Henry Lai research database, BioInitiative Report

Showing 1,644 studies

Brain & Nervous SystemNo Effects Found

Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure.

Ghatei N et al. · 2017

Researchers exposed pregnant mice and their offspring to cell phone radiation at 900 and 1800 MHz frequencies, then examined how this affected genes related to cell death and DNA repair in the brain's cerebellum. They found that the radiation did not trigger cell death pathways but did alter expression of genes involved in DNA repair. The authors concluded that while cell phone radiation may cause some cellular changes, the brain appears capable of repairing any damage through normal cellular mechanisms.

Brain & Nervous SystemNo Effects Found

Neurodevelopment for the first three years following prenatal mobile phone use, radio frequency radiation and lead exposure.

Choi KH et al. · 2017

Researchers followed 1,198 mother-child pairs to examine whether mobile phone use during pregnancy affects children's brain development in their first three years. While they found no direct link between prenatal phone use and developmental delays, children whose mothers had both high lead exposure and heavy phone use showed increased risk of developmental problems. This suggests that RF radiation might amplify the harmful effects of other toxins during pregnancy.

Brain & Nervous SystemNo Effects Found

An assessment of the autonomic nervous system in the electrohypersensitive population: a heart rate variability and skin conductance study.

Andrianome S et al. · 2017

French researchers studied whether people who report electromagnetic hypersensitivity (EHS) have different nervous system responses compared to healthy controls, and whether exposure to common wireless signals affects their autonomic nervous system. They measured heart rate variability and skin conductance in 30 EHS individuals and 25 controls, then exposed 10 EHS participants to GSM, DECT, and Wi-Fi signals at environmental levels (1 V/m). The study found no significant differences in nervous system responses between EHS and control groups, and no measurable effects from the wireless exposures.

DNA & Genetic DamageNo Effects Found

No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines

Villarini M et al. · 2017

Italian researchers exposed brain cancer cells (neuroblastoma) to 50 Hz magnetic fields and aluminum compounds, both separately and together, to see if they would cause DNA damage. After exposing the cells to magnetic field levels ranging from 0.01 to 1 mT for up to 5 hours, they found no DNA damage, no changes in cellular stress markers, or any harmful synergistic effects when the exposures were combined. This suggests that short-term exposure to these power-frequency magnetic fields, even in combination with aluminum, does not appear to damage DNA in these particular brain cell types.

Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function.

Zhang J, Sumich A, Wang GY. · 2017

Researchers reviewed recent brain imaging and brain wave studies to examine whether mobile phone radiation affects brain function. They found that phone radiation appears to increase brain activity and efficiency, particularly in areas near where you hold the phone, and this increased activity was linked to faster reaction times and sleep disruption. The findings suggest the scientific question of mobile phone effects on the brain should be reopened, though the researchers note that long-term effects remain largely unstudied.

Mobile phone use and glioma risk: A systematic review and meta-analysis.

Yang M et al. · 2017

Researchers analyzed 11 studies involving over 17,000 people to examine whether cell phone use increases brain tumor risk. They found that using a phone for 10 or more years increased the odds of developing glioma (a type of brain tumor) by 44%, with the strongest association for tumors on the same side of the head where people held their phone. The risk was particularly high for low-grade gliomas, which more than doubled with long-term use.

Mobile Phone Use and The Risk of Headache: A Systematic Review and Meta-analysis of Cross-sectional Studies.

Wang J, Su H, Xie W, Yu S. · 2017

Researchers analyzed seven studies involving thousands of people to determine whether mobile phone use increases headache risk. They found that mobile phone users were 38% more likely to experience headaches compared to non-users, with risk increasing dramatically based on daily call duration and frequency. The study shows a clear dose-response relationship: people making calls longer than 15 minutes daily had 2.5 times higher headache risk than those using phones less than 2 minutes daily.

Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain.

Sharma A, Kesari KK, Saxena VK, Sisodia R · 2017

Researchers exposed young mice to 10 GHz microwave radiation (similar to frequencies used in radar and some wireless communications) for 2 hours daily over 15 days. The exposed mice showed impaired spatial memory, brain tissue damage, and disrupted brain chemistry both immediately after exposure and weeks later. This suggests that developing brains may be particularly vulnerable to microwave radiation effects that persist even after exposure ends.

Analysis of ear side of mobile phone use in the general population of Japan.

Sato Y, Kojimahara N, Taki M, Yamaguchi N · 2017

Japanese researchers surveyed over 4,000 children and adults to understand which ear people prefer when using mobile phones. They found that children typically use their dominant hand's ear, while adults show more complex patterns - with older adults and heavy work users more likely to use their left ear. This matters because knowing which ear gets more radiation exposure helps researchers design better studies on mobile phone health effects.

Effects of prenatal exposure to WIFI signal (2.45GHz) on postnatal development and behavior in rat: Influence of maternal restraint.

Othman H, Ammari M, Sakly M, Abdelmelek H · 2017

Researchers exposed pregnant rats to 2.45GHz WiFi signals (the same frequency used by most home routers) for 2 hours daily throughout pregnancy, then tested their offspring for developmental and behavioral changes. They found that prenatal WiFi exposure altered physical development and caused anxiety, motor problems, and learning difficulties in the young rats, with effects being more severe when combined with maternal stress. The study also revealed oxidative stress (cellular damage) in the brains of exposed offspring.

Mobile phone types and SAR characteristics of the human brain.

Lee AK, Hong SE, Kwon JH, Choi HD, Cardis E. · 2017

Researchers analyzed how different types of mobile phones expose the brain to electromagnetic radiation by calculating specific absorption rates (SAR) for 11 phone models representing 86% of phones sold in Korea since 2002. They found that phone design, antenna type, and user age significantly affect how much radiation the brain absorbs, with variations depending on whether phones had internal or external antennas. This research helps us understand why some phones may pose greater exposure risks than others.

RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation.

Ibitayo AO et al. · 2017

Researchers exposed young male rats to Wi-Fi radiation at 2.5 GHz for 30, 45, and 60 days to study brain effects. They found DNA damage and vascular congestion (blood vessel swelling) in the brain tissue that worsened with longer exposure periods. This suggests that everyday Wi-Fi exposure may cause cumulative damage to brain cells and blood vessels over time.

The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats.

Hassanshahi A et al. · 2017

Researchers exposed 80 male rats to Wi-Fi radiation (2.4 GHz) for 12 hours daily over 30 days, then tested their ability to recognize new versus familiar objects using sight, touch, and combined senses. The Wi-Fi-exposed rats lost their ability to distinguish between new and familiar objects in all tests, while also showing increased expression of certain brain receptors in the hippocampus (the brain's memory center). This suggests that chronic Wi-Fi exposure may impair how the brain processes and integrates sensory information.

Mobile phones, cordless phones and rates of brain tumors in different age groups in the Swedish National Inpatient Register and the Swedish Cancer Register during 1998-2015.

Hardell L, Carlberg M. · 2017

Swedish researchers analyzed brain tumor rates from 1998-2015 using two national health databases and found a concerning pattern: brain tumor rates increased by 2.06% annually overall, with the steepest increase of 4.24% per year after 2007. The 20-39 age group showed the highest increases, coinciding with widespread mobile phone adoption, and the researchers discovered that many brain tumors are likely being underreported to cancer registries.

Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

Gökçek-Saraç Ç et al. · 2017

Researchers exposed rats to cell phone radiation at 900 MHz and 2100 MHz frequencies for either 1 week or 10 weeks, then examined changes in brain enzymes involved in memory and learning. They found that longer exposure (10 weeks) caused more significant changes than shorter exposure (1 week), and that 2100 MHz radiation (used by 3G networks) had stronger effects than 900 MHz radiation (used by 2G networks). This suggests that both the duration of exposure and the specific frequency matter when it comes to how wireless radiation affects the brain.

Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells.

Eghlidospour M, Ghanbari A, Mortazavi SMJ, Azari H. · 2017

Iranian researchers exposed neural stem cells (brain cells that can develop into neurons) to radiation from a GSM 900-MHz mobile phone for different time periods. They found that longer exposures significantly reduced the cells' ability to multiply and form new neurons, though the cells didn't die. This suggests that cell phone radiation may interfere with the brain's natural ability to generate new brain cells, a process crucial for learning, memory, and brain repair.

Mobile phone use, school electromagnetic field levels and related symptoms: a cross-sectional survey among 2150 high school students in Izmir.

Durusoy R, Hassoy H, Özkurt A, Karababa AO. · 2017

Turkish researchers surveyed 2,150 high school students about their mobile phone use and measured electromagnetic field levels in their schools. Students who used mobile phones were 90% more likely to experience headaches, 78% more likely to report fatigue, and 53% more likely to have sleep problems compared to non-users. The study found clear dose-response relationships, meaning heavier phone use correlated with more frequent symptoms.

Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation.

Carlberg M, Hardell L. · 2017

Researchers used a rigorous scientific framework to evaluate whether mobile and cordless phone use causes brain tumors called gliomas. They found that people with the highest phone use had a 90% increased risk of developing gliomas, with risk doubling for those using wireless phones for 20+ years. The study concluded that radiofrequency radiation from phones should be classified as a human carcinogen.

Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts.

Birks L et al. · 2017

Researchers analyzed data from 83,884 mother-child pairs across five countries to examine whether cell phone use during pregnancy affects children's behavior. They found that mothers who used cell phones more frequently during pregnancy were more likely to have children with hyperactivity and attention problems by ages 5-7. The study suggests prenatal EMF exposure may influence brain development, though the researchers acknowledge other factors could explain these connections.

Use of mobile and cordless phones and change in cognitive function: a prospective cohort analysis of Australian primary school children.

Bhatt CR et al. · 2017

Australian researchers followed 412 primary school children for up to 3 years to see if using mobile phones and cordless phones affected their thinking abilities. They found mixed results - increased mobile phone use was linked to some changes in cognitive performance, including faster response times on some tasks but slower response times on others. The researchers concluded there was limited evidence that phone use significantly impacts children's cognitive function.

Long-term exposure to a continuous 900 MHz electromagnetic field disrupts cerebellar morphology in young adult male rats.

Aslan A, İkinci A, Baş O, Sönmez OF, Kaya H, Odacı E. · 2017

Researchers exposed young rats to 900 MHz radiofrequency radiation (similar to cell phone frequencies) for one hour daily during adolescence and examined their brain tissue. They found significant damage to the cerebellum, including fewer Purkinje cells (critical neurons for movement and coordination) and abnormal cell arrangement in exposed animals compared to unexposed controls. This suggests that even brief daily EMF exposure during brain development may cause lasting neurological damage.

Acute effects of the electromagnetic waves emitted by mobile phones on attention in emergency physicians.

Altuntas G et al. · 2017

Researchers exposed 30 emergency physicians to cell phone radiation (900-1800 MHz) for 15 minutes and tested their attention and concentration using standardized cognitive tests. Surprisingly, doctors exposed to the radiation actually performed better on selective attention tasks compared to those holding phones that were turned off. The study suggests short-term cell phone radiation exposure may temporarily enhance certain cognitive functions rather than impair them.

Influence of the on-line ELF-EMF stimulation on the electrophysiological properties of the rat hippocampal CA1 neurons in vitro.

Zheng Y, Ma W, Dong L, Dou JR, Gao Y, Xue J. · 2017

Researchers tested how extremely low frequency electromagnetic fields (ELF-EMF) affect brain cells from rats in laboratory conditions. They found that these magnetic fields directly activated specific electrical channels in hippocampus neurons (brain cells involved in memory and learning). This research helps explain how ELF-EMF exposure can influence brain cell activity at the cellular level.

Deep Brain Magnetic Stimulation Promotes Neurogenesis and Restores Cholinergic Activity in a Transgenic Mouse Model of Alzheimer's Disease.

Zhen J, Qian Y, Fu J, Su R, An H, Wang W , Zheng Y, Wang X. · 2017

Researchers tested deep brain magnetic stimulation (a targeted magnetic field therapy) on mice genetically engineered to develop Alzheimer's disease. They found that the magnetic treatment improved the mice's learning and memory, promoted growth of new brain cells in the memory center, and restored important brain chemicals needed for cognitive function. This suggests magnetic field therapy might help protect against Alzheimer's-related brain damage.

Effects of Extremely Low-Frequency Electromagnetic Fields on Neurogenesis and Cognitive Behavior in an Experimental Model of Hippocampal Injury.

Sakhaie MH et al. · 2017

Researchers exposed mice with brain injury to extremely low-frequency electromagnetic fields (ELF-EMF) and found the exposure enhanced spatial memory and learning abilities. The EMF exposure also increased the production of new brain cells (neurogenesis) in the hippocampus, the brain region crucial for memory formation. This suggests ELF-EMF might have therapeutic potential for treating neurodegenerative conditions by promoting brain cell regeneration.

Learn More

For a comprehensive exploration of EMF health effects including brain & nervous system, along with practical protection strategies, explore these books by R Blank and Dr. Martin Blank.

FAQs: EMF & Brain & Nervous System

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
The BioInitiative Report database includes 1,644 peer-reviewed studies examining the relationship between electromagnetic field exposure and brain & nervous system. These studies have been conducted by researchers worldwide and published in scientific journals. The research spans multiple decades and includes various types of EMF sources including cell phones, WiFi, power lines, and other common sources of electromagnetic radiation.
78% of the 1,644 studies examining brain & nervous system found measurable biological effects from EMF exposure. This means that 1284 studies documented observable changes in biological systems when exposed to electromagnetic fields. The remaining 22% either found no significant effects or had inconclusive results, which is typical in scientific research where study design and exposure parameters vary.