3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

Is 5G Safe? What the Research Actually Shows

Based on 574 peer-reviewed studies

Share:

5G technology has generated significant public concern about health effects. The topic has also attracted misinformation, making it difficult for people to understand what scientific research actually shows about 5G safety.

5G operates across different frequency bands—some similar to existing 4G networks, others using higher frequencies (millimeter waves) that are relatively new for widespread consumer exposure. This page focuses on what peer-reviewed research says about radiofrequency radiation at 5G frequencies.

We present the scientific evidence objectively, including both studies that raise concerns and those that find no effects, so you can make informed judgments based on actual research.

Key Research Findings

  • Limited research exists specifically on 5G millimeter wave frequencies
  • Lower-band 5G uses frequencies similar to well-studied 4G/LTE
  • Swedish 2025 report: 'need for more research' on higher 5G bands

Related Studies (574)

Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field.

Kim JH, Kim HJ, Yu DH, Kweon HS, Huh YH, Kim HR. · 2017

Korean researchers exposed mice to cell phone-frequency radiation (835 MHz) for 5 hours daily and examined changes in brain cells. They found that this exposure significantly reduced the number of synaptic vesicles (tiny containers that store brain chemicals) and decreased levels of proteins needed for proper brain communication. These changes suggest that radiofrequency radiation may disrupt how brain cells communicate with each other.

Effects of exposure to electromagnetic field from 915 MHz radiofrequency identification system on circulating blood cells in the healthy adult rat.

Kim HS et al. · 2017

Researchers exposed rats to 915 MHz radiofrequency radiation (used in RFID systems) for 8 hours daily over 2 weeks. They found measurable changes in blood cell counts - red blood cells increased while white blood cells decreased, demonstrating RF radiation can alter blood composition at moderate exposure levels.

The α-helix alignment of proteins in water solution toward a high-frequency electromagnetic field: A FTIR spectroscopy study.

Calabrò E, Magazù S. · 2017

Italian researchers exposed proteins (including hemoglobin and albumin) to mobile phone radiation at 1750 MHz for 4 hours and measured changes in their molecular structure. They found that the proteins' alpha-helix structures physically aligned themselves with the electromagnetic field, causing measurable changes in their chemical bonds. This demonstrates that cell phone-level radiation can directly alter the shape and orientation of essential biological molecules.

Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines.

Al-Serori H et al. · 2017

Austrian researchers exposed human brain tumor cells to UMTS cell phone radiation for 16 hours at levels reflecting real-world phone use (SAR levels of 0.25 to 1.0 W/kg). They found no evidence of DNA damage or chromosomal abnormalities, though the highest exposure level triggered programmed cell death in one type of brain cancer cell. This study suggests UMTS phone signals may not directly damage genetic material in brain cells.

Mobile-phone Radiation-induced Perturbation of Gene-expression Profiling, Redox Equilibrium and Sporadic-apoptosis Control in the Ovary of Drosophila melanogaster.

Manta AK et al. · 2017

Researchers exposed fruit flies to mobile phone radiation for just 30 minutes and found significant biological disruptions in their ovaries. The exposure caused a 60% increase in harmful molecules called reactive oxygen species, altered the activity of 168 genes, and doubled the rate of cell death in reproductive tissue. These findings suggest that even brief exposure to cell phone radiation can trigger cellular stress and damage reproductive cells.

Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice

Kim JH, Yu DH, Huh YH, Lee EH, Kim HG, Kim HR. · 2017

Researchers exposed mice to cell phone-level radiation (835 MHz) for 5 hours daily over 12 weeks and found significant brain changes. The radiation damaged the protective coating around brain cells (called myelin) and caused hyperactive behavior in the mice. This suggests that prolonged exposure to radiofrequency radiation at levels similar to heavy cell phone use may harm brain function and behavior.

Cancer & TumorsNo Effects Found

Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

Silva V et al. · 2016

Researchers exposed human thyroid cells from surgical patients to cell phone-like radiofrequency radiation and tested for cancer-related changes. They found no effects on cell growth markers, DNA damage indicators, or stress proteins that typically signal cellular harm. The study suggests that under these specific conditions, cell phone radiation did not trigger cancer-promoting changes in thyroid cells.

Radiofrequency radiation injures trees around mobile phone base stations.

Waldmann-Selsam C et al. · 2016

German researchers studied 120 trees near cell phone towers over nine years and found that trees closest to the towers developed damage on the side facing the antenna, while trees in low-radiation areas showed no damage. The damage patterns directly correlated with radiofrequency radiation measurements, with higher exposure levels corresponding to more severe tree damage. This suggests that RF radiation from cell towers can cause biological harm to living organisms at environmental exposure levels.

Cellular Effects132 citations

Plant Responses to High Frequency Electromagnetic Fields.

Vian A, Davies E, Gendraud M, Bonnet P. · 2016

Researchers reviewed how plants respond to high-frequency electromagnetic fields (the same type emitted by wireless devices). They found that even low-power, non-heating EMF exposure triggered significant changes in plant metabolism, gene expression, and growth patterns. These biological changes occurred not just in directly exposed plant tissues, but also spread to distant parts of the plant, suggesting EMF acts as a genuine environmental stressor that living organisms detect and respond to.

Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

Shehu A, Mohammed A, Magaji RA, Muhammad MS · 2016

Nigerian researchers exposed rats to mobile phones for 4 weeks, testing different modes including silent, vibration, ringtone, or combined settings for 10 minutes daily. All exposed groups showed increased anxiety-like behavior compared to controls, while rats exposed to ringtones (with or without vibration) also showed reduced antioxidant enzyme activity in their brains. This suggests that mobile phone exposure affects both brain function and cellular stress responses, even when the phone isn't making noise.

Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

Sagioglou NE et al. · 2016

Greek researchers exposed fruit flies to radiofrequency radiation at various frequencies (100-900 MHz) and found that all exposure protocols increased cell death in developing eggs, even at very low power levels. The study revealed that frequency-modulated signals caused more damage than continuous waves, and that biological effects don't follow a simple dose-response relationship. This research demonstrates that even brief exposures to RF radiation can disrupt normal cellular processes in developing organisms.

Metabolomic study of urinary polyamines in rat exposed to 915 MHz radiofrequency identification signal.

Paik MJ, Kim HS, Lee YS, Do Choi H, Pack JK, Kim N, Ahn YH · 2016

Researchers exposed rats to 915 MHz radiofrequency signals (like those from RFID tags) for 8 hours daily over 2 weeks and analyzed chemical changes in their urine. They found significant alterations in polyamines, which are molecules involved in cellular metabolism and growth. The RF-exposed rats showed a 54% increase in one specific polyamine compared to just 17% in control animals, suggesting the radiofrequency exposure disrupted normal cellular processes.

Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of sprague-dawley rats.

López-Furelos A et al. · 2016

Spanish researchers exposed rats to cell phone frequencies (900 MHz and 2450 MHz) for 1-2 hours and found significant cellular stress in brain tissue 24 hours later. The study measured heat shock proteins (stress markers) and caspase-3 (a protein involved in cell death) in different brain regions. Surprisingly, when rats were exposed to both frequencies together, the effects weren't simply additive, suggesting that multiple EMF signals interact with brain tissue through complex mechanisms we don't fully understand.

Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney.

Kuybulu AE et al. · 2016

Researchers exposed pregnant rats and their offspring to 2.45 GHz wireless radiation (the same frequency used by WiFi and microwaves) and found significant kidney damage in the young rats. The exposed animals showed increased oxidative stress (cellular damage from harmful molecules), reduced antioxidant defenses, and visible tissue damage in their kidneys. This suggests that EMF exposure during pregnancy and early development may harm kidney function in developing organisms.

Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells.

Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ. · 2016

Researchers exposed mouse brain cells to radiofrequency radiation while also treating them with glutamate, a brain chemical that becomes toxic in Alzheimer's disease. While RF exposure alone had minimal effects, it significantly amplified the damage when combined with glutamate, increasing cell death and harmful oxidative stress. This suggests that RF radiation may worsen brain cell vulnerability in conditions like Alzheimer's disease.

Effects of exposure to 2100MHz GSM-like radiofrequency electromagnetic field on auditory system of rats.

Çeliker M et al. · 2016

Researchers exposed rats to 2100 MHz radiofrequency radiation (similar to 3G cell phone signals) for 30 days to study effects on hearing. While the rats' hearing tests showed no functional changes, microscopic examination revealed increased cell death and degeneration in the brain areas that process sound. This suggests that cell phone radiation may damage auditory neurons even before hearing loss becomes detectable.

Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice.

Pandey N, Giri S, Das S, Upadhaya P. · 2016

Researchers exposed male mice to 900 MHz radiofrequency radiation (similar to cell phone frequencies) for 4-8 hours daily for 35 days to study effects on sperm production. The radiation caused DNA damage in sperm-producing cells and disrupted the normal development process, resulting in significantly reduced sperm counts. While some recovery occurred after radiation exposure ended, the study demonstrates that RF radiation can impair male fertility through cellular damage.

The effects of radiofrequency electromagnetic radiation on sperm function

Houston BJ, Nixon B, King BV, De Iuliis GN, Aitken RJ. · 2016

Researchers analyzed 27 studies examining how radiofrequency radiation (the type emitted by cell phones and wireless devices) affects male fertility. They found that 21 of the 27 studies showed harmful effects, with sperm swimming ability declining, DNA damage increasing, and cells producing more harmful reactive oxygen species. The evidence suggests RF radiation damages the cellular powerhouses (mitochondria) in sperm, leading to oxidative stress that impairs male reproductive health.

Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells

Lai HC, Chan HW, Singh NP · 2016

Researchers exposed three different types of human cancer cells to radiofrequency energy from RFID microchips for one hour and found that the RF energy killed or slowed the growth of all cancer cell types tested. The effect was blocked when cells were pretreated with compounds that prevent oxidative damage, suggesting the RF energy works by generating harmful free radicals through a chemical process called the Fenton Reaction.

Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells

Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ · 2016

Scientists exposed mouse brain cells to radiofrequency radiation and glutamate, a brain chemical that becomes toxic during diseases like Alzheimer's. RF exposure alone caused minimal harm, but when combined with glutamate, it dramatically increased cell death, suggesting RF radiation may worsen brain damage in diseased conditions.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.