Hirose H et al. · 2007
Japanese researchers exposed human brain and lung cells to radiofrequency radiation at levels similar to cell tower emissions (2.1 GHz) for up to 48 hours. They found no changes in heat shock proteins (cellular stress markers that increase when cells are damaged) even at exposure levels 10 times higher than public safety limits. This suggests that cell tower-level RF radiation does not trigger detectable cellular stress responses in laboratory conditions.
Platano D et al. · 2007
Italian researchers exposed rat brain cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) to see if it affected calcium channels, which are crucial for brain cell communication. After exposing the cells to radiation at 2 W/kg for short periods, they found no changes in how calcium moved through these channels. This suggests that brief exposure to cell phone-level radiation may not immediately disrupt this particular aspect of brain cell function.
Platano D et al. · 2007
Italian researchers exposed rat brain cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) for short periods to see if it affected calcium channels, which are crucial for nerve cell communication. They found no changes in how calcium moved through these channels, even at radiation levels of 2 W/kg. This suggests that brief cell phone-level exposures may not immediately disrupt this particular aspect of brain cell function.
Shirai T et al. · 2007
Researchers exposed young rats to cell phone-like radiation (1.95 GHz W-CDMA signals) for 2 years to see if it would promote brain tumor development in animals already given a cancer-causing chemical. The study found no significant increase in brain tumors from the radiation exposure at levels of 0.67 and 2.0 W/kg SAR. This suggests that chronic exposure to this type of cell phone radiation does not accelerate brain tumor formation in this animal model.
Juutilainen J, Heikkinen P, Soikkeli H, Mäki-Paakkanen J. · 2007
Finnish researchers exposed mice to cell phone radiation for over a year to test whether it damages DNA by looking for micronuclei (broken chromosome fragments) in blood cells. They found no DNA damage from radiofrequency exposure at levels similar to what humans experience from mobile phones. This was true across different phone technologies (analog and digital), exposure durations (52-78 weeks), and mouse strains.
Chauhan V et al. · 2007
Canadian government researchers exposed three types of human cells to 1.9 GHz radiofrequency radiation (similar to cell phone signals) for 6 hours at power levels up to 10 W/kg. They measured multiple indicators of cellular stress including cell death, DNA damage, immune responses, and cell cycle disruption. The study found no detectable biological effects from the RF exposure at any power level tested.
Sanchez et al. · 2007
French researchers exposed human skin cells to GSM cell phone signals at the maximum allowed exposure level for 48 hours, looking for signs of cellular stress like those caused by heat or UV radiation. They found no evidence that the radiofrequency radiation caused stress responses or cell death, unlike the positive control treatments that clearly damaged cells. This suggests that cell phone radiation at current safety limits may not directly harm skin cells in laboratory conditions.
Tahvanainen K et al. · 2007
Finnish researchers measured ear canal temperature in 30 people during 35-minute cell phone calls using both 900 MHz and 1800 MHz phones. They found that ear temperatures increased by more than 1 degree Celsius during phone use compared to sham exposure, with the warming effect persisting even after the call ended. The researchers concluded this heating came from the phone's battery warming up during maximum power use, not from the radiofrequency fields themselves.
Chauhan V et al. · 2007
Canadian researchers exposed two types of human cells to 1.9 GHz radiofrequency radiation (similar to cell phone signals) for up to 24 hours at power levels ranging from very low to high. They found no changes in gene expression - meaning the RF exposure didn't turn genes on or off differently than unexposed cells. However, when they heated the same cells to 43°C (109°F) for comparison, multiple heat-shock genes activated as expected.
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007
Researchers exposed developing rat brain cells to cell phone radiation and found that higher exposure levels (2.4 W/kg) significantly reduced the formation of dendritic spines, which are essential for brain cell communication, suggesting potential interference with normal brain development during critical growth periods.
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007
Researchers exposed developing rat brain cells (hippocampal neurons) to cell phone radiation at 1800 MHz for 15 minutes daily over 8 days. At the higher exposure level (2.4 W/kg), the radiation significantly disrupted normal brain cell development, reducing the formation of dendrites (the branch-like structures neurons use to communicate) and synapses (connection points between neurons). This suggests cell phone radiation during critical developmental periods could interfere with normal brain formation.
Masuda H et al. · 2007
Researchers exposed rats to cell phone frequency radiation (1,439 MHz) for 10 minutes at three different power levels to see if it affected blood flow and the blood-brain barrier in their brains. They found no changes in any of the brain circulation measurements, including blood vessel size, blood flow speed, and whether the protective blood-brain barrier became more permeable. This suggests that short-term exposure to this type of radiofrequency radiation did not disrupt normal brain blood circulation.
Saran A et al. · 2007
Researchers exposed newborn mice genetically engineered to be highly susceptible to tumors to cell phone radiation (900 MHz GSM) for 30 minutes twice daily over 5 days. The exposed mice showed no increased cancer risk, no shortened lifespan, and no acceleration of tumor development compared to unexposed mice. This study suggests that brief early-life exposure to cell phone radiation at typical levels may not promote cancer development, even in genetically vulnerable subjects.
Trigano A, Blandeau O, Dale C, Wong MF, Wiart J. · 2007
Researchers tested whether cell phones interfere with implantable loop recorders (ILRs), small heart monitoring devices that track irregular rhythms. When phones were placed just 1 cm away from the devices and calls were made, 88% of tests showed electrical interference that created false signals on heart rhythm recordings. While the interference didn't permanently damage the devices, it could potentially mask real heart problems or create false alarms.
Irlenbusch L et al. · 2007
German researchers exposed 33 people to cell phone radiation at 902.4 MHz for 30 minutes to see if it affected their ability to detect light (visual discrimination threshold). They found no statistically significant changes in visual sensitivity between real exposure and fake exposure sessions. This suggests that brief GSM radiation exposure at typical power levels doesn't immediately impair basic visual function.
Irlenbusch L et al. · 2007
Researchers exposed 33 people to GSM mobile phone signals near their eyes to test whether radiofrequency radiation affects visual sensitivity (the ability to detect light differences). Using exposure levels similar to holding a phone close to your face, they found no measurable changes in visual discrimination abilities during 30-minute exposure sessions. This suggests that typical mobile phone use doesn't immediately impair basic visual function.
Crouzier D et al. · 2007
French researchers monitored rats exposed to cell phone radiation for 24 hours, tracking brain chemistry, brain waves, and sleep patterns. They found no meaningful effects from the radiation exposure, with only one minor sleep change that researchers couldn't link to the radiation.
Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. · 2007
Chinese researchers exposed rat brain neurons to cell phone-frequency radiation (1800 MHz) for 24 hours at power levels similar to heavy phone use. They found that 34 genes changed their activity levels, affecting how neurons function in areas like cell structure, communication, and metabolism. This demonstrates that radiofrequency radiation can alter the fundamental genetic programming of brain cells.
Brillaud E, Piotrowski A, de Seze R · 2007
French researchers exposed rats to 15 minutes of cell phone radiation and found brain inflammation that peaked after 2 days and lasted up to 10 days. The study measured stress proteins in brain tissue, suggesting brief phone exposure can trigger inflammatory responses in the brain.
Hung CS, Anderson C, Horne JA, McEvoy P · 2007
Researchers exposed 10 healthy young adults to different mobile phone signal modes for 30 minutes, then measured how long it took them to fall asleep. They found that exposure to 'talk mode' signals significantly delayed sleep onset compared to listening mode or no signal exposure. The study suggests that the specific signal patterns phones emit during calls may interfere with the brain's natural transition to sleep.
Kumlin T et al. · 2007
Finnish researchers exposed young rats to cell phone radiation (900 MHz) for 2 hours daily over 5 weeks. Unexpectedly, exposed rats showed improved learning and memory performance with no brain damage or blood-brain barrier problems, suggesting cognitive enhancement that warrants further investigation.
Meral I et al. · 2007
Researchers exposed guinea pigs to cell phone radiation for 12 hours daily over 30 days and measured brain tissue damage. They found increased oxidative stress (cellular damage from free radicals) in the brain, with higher levels of harmful compounds and lower levels of protective antioxidants. This suggests that prolonged cell phone radiation exposure may damage brain cells through oxidative stress mechanisms.
Hung CS, Anderson C, Horne JA, McEvoy P. · 2007
Researchers exposed sleep-deprived people to mobile phone signals for 30 minutes, then monitored their brain waves during sleep. Active phone transmissions during "talk mode" significantly delayed deep sleep onset compared to other phone modes, suggesting cell phone use can disrupt natural sleep patterns.
Tkalec M, Malarić K, Pevalek-Kozlina B. · 2007
Researchers exposed duckweed plants to cell phone-like radiofrequency radiation at 400 and 900 MHz frequencies. The exposure caused oxidative stress, where harmful molecules damage plant cells by overwhelming natural defenses. Higher frequency radiation generally produced more severe cellular damage than lower frequencies.
Baohong W et al. · 2007
Chinese researchers exposed human immune cells to 1.8 GHz microwave radiation and UV light. Microwaves alone caused no DNA damage, but when combined with UV, they disrupted normal DNA repair - initially reducing damage then increasing it hours later, suggesting unpredictable interference with cellular repair mechanisms.