Aynali G et al. · 2013
Researchers exposed rats to WiFi radiation (2.45 GHz) for one hour daily over 28 days and found it caused oxidative stress in throat tissue, measured by increased lipid peroxidation (cellular damage from free radicals). When rats were also given melatonin, this protective hormone significantly reduced the WiFi-induced damage and helped restore antioxidant defenses. This suggests WiFi radiation can cause cellular damage through oxidative stress, but natural protective mechanisms may help counteract these effects.
Eser O et al. · 2013
Researchers exposed rats to cell phone radiation frequencies for one hour daily over two months. The study found severe brain cell damage, increased harmful stress chemicals, and inflammation in multiple brain regions, demonstrating that prolonged mobile device frequency exposure can damage brain tissue.
Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. · 2013
Researchers exposed young adult and middle-aged gerbils to 50 Hz magnetic fields at three different intensities for seven days, then measured oxidative stress markers in their brains. They found that magnetic field exposure increased oxidative stress in all brain regions tested, with stronger effects at higher field intensities and in older animals. The effects were still detectable three days after exposure ended, particularly in the middle-aged gerbils.
Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. · 2013
Scientists exposed gerbils to power line frequency magnetic fields for seven days. The exposure increased brain cell damage in all tested regions, with stronger effects in older animals and at higher field strengths. Younger brains recovered better after exposure ended, suggesting age affects vulnerability.
Akdag MZ, Dasdag S, Cakir DU, Yokus B, Kizil G, Kizil M. · 2013
Researchers exposed rats to magnetic fields at levels considered safe for humans for 10 months. The fields didn't affect Alzheimer's-related proteins but significantly increased markers of cellular damage in brain tissue, suggesting long-term exposure may harm brain cells.
Akdag MZ, Dasdag S, Cakir DU, Yokus B, Kizil G, Kizil M. · 2013
Researchers exposed rats to magnetic fields at levels considered safe by current standards for 10 months. The exposure significantly increased two markers of brain cell damage and aging, suggesting that even "safe" magnetic field levels may cause harmful oxidative stress in brain tissue over time.
Glinka M, Sieroń A, Birkner E, Cieślar G · 2013
Researchers exposed rats with skin wounds to 40 Hz magnetic fields at 10 mT (millitesla) to see if it would help healing. They found the magnetic field exposure increased antioxidant enzyme activity and reduced cellular damage markers, suggesting the treatment helped protect cells from harmful oxidative stress during the wound healing process.
Aït-Aïssa S et al. · 2013
French researchers exposed pregnant rats and their offspring to WiFi signals (2.4 GHz) from pregnancy through 5 weeks after birth, then examined their brains for signs of cellular stress and damage. They found no differences in stress markers between WiFi-exposed and unexposed rat pups, even at exposure levels up to 4 W/kg. The study suggests that WiFi exposure during critical developmental periods may not cause detectable brain damage in young rats.
Amirifalah Z, Firoozabadi SM, Shafiei SA. · 2013
Researchers exposed 10 women to weak magnetic fields targeting brain regions for 9 minutes. The exposure reduced specific brainwave activity by 12-27% after treatment ended. This suggests targeted magnetic fields could potentially help treat conditions like anxiety by calming overactive brain areas.
Calderón C et al. · 2013
Researchers tested 47 cell phones and found they emit extremely low frequency magnetic fields averaging 221 nanoteslas during typical use. Phone manufacturer and design created a two-fold difference in exposure levels, suggesting mobile phones contribute substantially to magnetic field exposure.
Nasri K, Daghfous D, Landoulsi A. · 2013
Researchers exposed Salmonella bacteria to 2.45 GHz microwave radiation (the same frequency as WiFi and microwave ovens) for 40 seconds and found it significantly damaged the bacteria's cell membranes. The radiation altered the fatty acid composition of the cell walls and made the bacteria more vulnerable to antibiotics. This demonstrates that microwave radiation can cause measurable biological changes at the cellular level, even in simple organisms like bacteria.
Kumar S et al. · 2013
Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power line frequencies) for 2 hours daily over 8 weeks. The magnetic field exposure restored normal pain responses and corrected abnormal brain chemical levels that had developed after the spinal injury. This suggests that specific EMF exposures might have therapeutic potential for certain neurological conditions.
Kumar S et al. · 2013
Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power lines) for 2 hours daily over 8 weeks. They found that this exposure helped restore normal pain responses and brain chemistry that had been disrupted by the spinal injuries. The magnetic field treatment appeared to normalize levels of key brain chemicals like serotonin and GABA that control pain perception.
Wang X et al. · 2013
Researchers exposed young adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice when tested in maze tasks. This unexpected finding suggests that magnetic field exposure during adolescence might enhance certain cognitive abilities, though the implications for human brain development remain unclear.
Wang X et al. · 2013
Researchers exposed adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice. This unexpected finding suggests that certain EMF exposures during development might enhance rather than harm specific brain functions, though the implications for human health remain unclear.
Celik MS et al. · 2013
Researchers exposed rats to magnetic fields from power lines while giving them manganese, a potentially toxic mineral. Magnetic field exposure significantly increased manganese buildup in the brain, kidneys, and liver, suggesting everyday electrical exposures may enhance absorption of harmful metals.
Celik MS et al. · 2013
Researchers exposed rats to power line frequency magnetic fields while giving them manganese, a potentially toxic metal. The magnetic field exposure significantly increased manganese buildup in the brain, kidneys, and liver, suggesting EMF exposure may impair the body's ability to eliminate toxic substances.
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. · 2013
Researchers exposed newborn rat brain cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for just 10 minutes and found significant neuronal damage. The radiation triggered a harmful cellular pathway that led to decreased cell survival, increased cell death, and abnormal protein changes associated with neurodegeneration. This suggests that even brief RF exposure can activate damaging processes in developing brain cells.
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. · 2013
Researchers exposed newborn rat brain cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwaves) for just 10 minutes and found significant neuronal damage. The brain cells showed decreased viability, increased cell death, and abnormal protein changes associated with neurodegenerative diseases like Alzheimer's. The study identified a specific cellular pathway (p25/CDK5) that appears to drive this RF-induced brain cell injury.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (120 Hz at 0.66 mT) and found that these fields increased blood vessel permeability in specific brain regions called circumventricular organs. The magnetic field exposure caused blood vessels to dilate and become more permeable to substances that normally can't cross into brain tissue. This suggests that ELF magnetic fields can compromise the brain's protective blood barrier system.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to 120 Hz magnetic fields and found the fields made brain blood vessels leaky and dilated. This suggests EMF exposure might weaken the blood-brain barrier, which normally protects the brain from harmful substances in the bloodstream.
Esmekaya MA et al. · 2013
Scientists exposed E. coli bacteria to power line frequency magnetic fields for 24 hours. While the bacteria survived and reproduced normally, the electromagnetic exposure damaged their cell surfaces, creating holes and destroying outer membranes. This shows EMF can cause cellular damage even when organisms appear healthy.
Esmekaya MA et al. · 2013
Scientists exposed E. coli bacteria to 50 Hz magnetic fields for 24 hours. While the bacteria survived normally, the magnetic field exposure damaged their cell surfaces, creating holes and destroying membranes. This shows EMF can harm cells even when they appear healthy overall.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to magnetic fields from power lines for 15 days and monitored brain activity. The magnetic fields altered brainwave patterns, particularly in the brain's right side. Caffeine appeared to modify these effects, suggesting everyday exposures may interact in unexpected ways.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (the type emitted by power lines and appliances) for 15 days and found these fields significantly altered brain wave patterns, particularly enhancing activity in the right hemisphere. When caffeine was given alongside the magnetic field exposure, it appeared to partially counteract some of the brain changes, especially in areas controlling movement.