3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Outdoor EMF Infrastructure Research

RFELF Magnetic

Research on environmental EMF sources - cell towers, 5G small cells, power lines, and smart meters.

3
Sources
2,829
Studies
2
EMF Types

Related Studies (1,815)

Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain

Alkis ME et al. · 2019

Turkish researchers exposed rats to cell phone radiation at three different frequencies (900, 1800, and 2100 MHz) for 2 hours daily over 6 months to study brain effects. They found increased DNA damage and oxidative stress in brain tissue across all frequency groups compared to unexposed control rats. This suggests that chronic exposure to the radiofrequency radiation emitted by mobile phones may harm brain cells at the genetic level.

Effects of pulsed electromagnetic fields on learning and memory abilities of STZ-induced dementia rats.

Li Y, Zhang Y, Wang W, Zhang Y, Yu Y, Cheing GL, Pan W. · 2019

Researchers exposed rats with chemically-induced dementia to pulsed magnetic fields (10 mT at 20 Hz) and found dramatic improvements in learning and memory abilities. The treated rats showed 66% faster escape times in maze tests and 55% shorter swimming distances compared to untreated dementia rats. The magnetic field exposure also increased expression of genes linked to brain growth and repair, suggesting the fields may help protect against cognitive decline.

Effects of single- and hybrid-frequency extremely low-frequency electromagnetic field stimulations on long-term potentiation in the hippocampal Schaffer collateral pathway.

Zheng Y, Ma XX, Dong L, Gao Y, Tian L. · 2019

Researchers exposed rat brain tissue to 15 Hz magnetic fields at medical device levels to study effects on brain connections. The magnetic fields significantly disrupted normal brain signaling that supports learning and memory, showing common electromagnetic frequencies can interfere with basic brain functions.

Effects of 5-HT1 and 5-HT 2 Receptor Agonists on Electromagnetic Field-Induced Analgesia in Rats.

Ozdemir E, Demirkazik A, Taskıran AS, Arslan G. · 2019

Researchers exposed rats to 50 Hz magnetic fields (the same frequency as power lines) for 2 hours daily over 15 days and found the fields produced pain relief (analgesia). They discovered this pain-blocking effect works through serotonin receptors in the brain - the same chemical system involved in mood and sleep. The study shows that extremely low frequency magnetic fields can directly alter brain chemistry and pain perception.

The Effects of Mobile Phone Radiofrequency Electromagnetic Fields on β-Amyloid-Induced Oxidative Stress in Human and Rat Primary Astrocytes.

Tsoy A et al. · 2019

Researchers exposed brain cells called astrocytes to 918 MHz radiofrequency radiation (similar to cell phone signals) along with proteins that cause Alzheimer's disease damage. Surprisingly, they found that the RF exposure actually reduced harmful oxidative stress and protected the cells from damage caused by the Alzheimer's proteins. The study suggests that certain RF frequencies might have therapeutic potential for treating Alzheimer's disease.

Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain.

Wang CX et al. · 2019

Researchers exposed participants to Earth-strength magnetic fields while monitoring their brain activity with EEG. They discovered that specific magnetic field rotations caused measurable changes in brain waves (alpha oscillations), but only when the field was oriented as it naturally occurs in the Northern Hemisphere. This suggests humans possess an unconscious magnetic sensing ability similar to migratory animals.

Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice.

Pandey N, Giri S. · 2018

Researchers exposed male mice to 900 MHz radiofrequency radiation (similar to cell phone signals) for 6 hours daily over 35 days and found significant damage to sperm-producing cells, including DNA damage, reduced sperm count, and abnormal sperm shape. However, when mice also received melatonin supplements, these harmful effects were largely prevented or reversed. This suggests that RF radiation can impair male fertility, but antioxidants like melatonin may offer protection.

Probing the Origins of 1,800 MHz Radio Frequency Electromagnetic Radiation Induced Damage in Mouse Immortalized Germ Cells and Spermatozoa in vitro.

Houston BJ, Nixon B, King BV, Aitken RJ, De Iuliis GN. · 2018

Researchers exposed mouse sperm to cell phone radiation (1.8 GHz) for 3-4 hours at low power. The radiation damaged sperm DNA, reduced sperm movement, and created harmful molecules in cell energy centers. This provides biological evidence for how wireless signals might affect male fertility.

Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposure.

Akbarnejad Z et al. · 2018

Researchers injected rats with Alzheimer's-causing proteins and then exposed them to magnetic fields (50 Hz at 10 milliTesla) for 14 days. The magnetic field exposure significantly improved memory and learning abilities in the Alzheimer's rats, as measured by maze tests. This suggests that certain electromagnetic fields might help protect brain function in neurodegenerative diseases.

Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line.

López-Furelos A et al. · 2018

Spanish researchers exposed immune cells (macrophages) to radio frequency radiation at cell phone frequencies (900 MHz and 2450 MHz) for up to 72 hours. They found that the radiation significantly impaired the cells' ability to fight infections and triggered inflammatory responses, with combined frequencies causing more damage than single frequencies. This suggests that everyday exposure to multiple wireless signals simultaneously may compromise immune function.

Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease.

Bobkova NV et al. · 2018

Russian researchers exposed Alzheimer's mice to extremely weak magnetic fields for 4 hours daily over 10 days. The treatment reduced toxic brain plaques and improved memory in some mice, suggesting specific magnetic frequencies might help clear harmful proteins in early neurodegenerative diseases.

Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model.

Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. · 2018

Researchers exposed rats to Wi-Fi radiation (2.45 GHz) continuously for 10 weeks to study its effects on cellular defense systems. They found that Wi-Fi exposure significantly weakened the animals' antioxidant defenses, reducing the activity of key protective enzymes that normally protect cells from damage. This suggests that chronic Wi-Fi exposure may compromise the body's natural ability to defend against cellular stress.

Brain & Nervous SystemNo Effects Found

50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1G93A model of amyotrophic lateral sclerosis.

Consales C et al. · 2018

Researchers exposed lab-grown nerve cells with ALS-related genetic mutations to 50 Hz magnetic fields (the same frequency as power lines) for up to 72 hours. They found that while the magnetic field didn't kill cells or increase oxidative stress, it disrupted iron metabolism genes specifically in cells with the SOD1G93A mutation linked to familial ALS. This suggests that power frequency magnetic fields may interfere with cellular iron regulation in genetically susceptible individuals.

Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field

Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P · 2018

Researchers exposed tiny worms (C. elegans) to 50-Hz magnetic fields at 3 milliTesla from egg to larval stage and found significant disruptions in cellular energy production and inflammation pathways. The magnetic field exposure caused oxidative stress (cellular damage from free radicals), impaired the worms' energy-producing machinery, and increased inflammatory compounds. This matters because it demonstrates that power-frequency magnetic fields can disrupt fundamental biological processes at the cellular level.

Oxidative and mutagenic effects of low intensity GSM 1800 MHz microwave radiation.

Yakymenko I et al. · 2018

Ukrainian researchers exposed developing quail embryos to low-level cell phone radiation (1800 MHz) at power levels typical of smartphone use. The radiation caused significant DNA damage, doubled the production of harmful molecules that damage cells, and nearly doubled embryo death rates. This demonstrates that even very low levels of wireless radiation can cause genetic damage in developing organisms.

Reactive oxygen species mediates 50-Hz magnetic field-induced EGF receptor clustering via acid sphingomyelinase activation.

Sun L, Chen L, Bai L, Xia Y, Yang X, Jiang W, Sun W. · 2018

Researchers exposed human cells to power line frequency magnetic fields for 15 minutes and found they triggered harmful cellular changes linked to uncontrolled cell growth. The magnetic fields increased damaging molecules called reactive oxygen species, proving these everyday exposures can disrupt normal cell function.

Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

Qureshi MRA, Alfadhl Y, Chen X, Peyman A, Maslanyj M, Mann S · 2018

Researchers calculated how much radiofrequency energy from smart meters gets absorbed by human bodies. Children absorbed the most energy, especially when within 15 centimeters of 2.4 GHz meters. Though levels stayed below safety limits, the study confirms smart meters cause measurable energy absorption in tissue.

Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol.

Comelekoglu U et al. · 2018

Turkish researchers exposed rats to 1800 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over four weeks and found significant damage to the sciatic nerve, which controls leg function. The nerve damage included slower electrical signals, increased oxidative stress, and physical deterioration of nerve fibers. However, when rats were also given paricalcitol (a vitamin D derivative), the nerve damage was partially prevented.

Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets.

Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. · 2018

Researchers exposed rats to Wi-Fi radiation (2.4 GHz) for 4 hours daily over 45 days and found it significantly impaired the pancreas's ability to produce insulin while causing elevated blood sugar levels. The Wi-Fi exposure also increased harmful oxidative stress in pancreatic tissue and reduced the body's natural antioxidant defenses. This suggests that chronic Wi-Fi radiation exposure may interfere with blood sugar regulation, a critical function for metabolic health.

Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet.

Gallasch E, Rafolt D, Postruznik M, Fresnoza S, Christova M. · 2018

Researchers exposed 14 healthy volunteers to 20 Hz magnetic fields generated by rotating permanent magnets for 15 minutes, then measured brain activity in the motor cortex (the brain region controlling movement). They found that this magnetic field exposure significantly reduced motor cortex excitability, meaning the brain region became less responsive to stimulation. This demonstrates that even brief exposure to rotating magnetic fields can measurably alter brain function.

FAQs: EMF in Outdoor / Infrastructure

The outdoor / infrastructure environment contains several common sources of electromagnetic field exposure including 5g / cell towers, power lines, smart meters. Together, these 3 sources account for 2,829 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 2,829 peer-reviewed studies in our database examining EMF sources commonly found in outdoor / infrastructure environments. These studies cover 3 different EMF sources: 5G / Cell Towers (1,404 studies), Power Lines (411 studies), Smart Meters (1,014 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
5G / Cell Towers has the most research with 1,404 studies, followed by Smart Meters (1,014) and Power Lines (411). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in outdoor / infrastructure settings.