Mahmoudinasab H, Saadat M. · 2018
Researchers exposed human brain cells (neuroblastoma cells) to 50 Hz electromagnetic fields at 0.5 mT for different time patterns and measured changes in antioxidant gene expression. They found that EMF exposure altered the activity of genes responsible for protecting cells from damage, with different exposure patterns producing different effects. This suggests that even brief EMF exposures can disrupt the cellular machinery that defends against oxidative stress.
Consales C et al. · 2018
Researchers exposed human brain cells and mouse neurons to 50-Hz magnetic fields (the type from power lines) at 1 milliTesla and found significant changes in gene regulation. The magnetic fields altered microRNAs (small molecules that control gene expression) and increased production of alpha-synuclein, a protein linked to Parkinson's disease. This suggests that power-frequency magnetic fields may disrupt normal brain cell function through epigenetic changes that could predispose neurons to degeneration.
Mahmoudinasab H, Saadat M. · 2018
Scientists tested whether 50 Hz magnetic fields affect how cancer drugs work on different cell types. The magnetic field protected nerve cells from chemotherapy toxicity by boosting antioxidants, but didn't protect breast cancer cells. This shows EMF can alter medical treatment effectiveness differently across cell types.
Seif F, Bayatiani MR, Ansarihadipour H, Habibi G, Sadelaji S · 2018
Researchers exposed rats to magnetic fields from power lines for 2 hours daily over a month, finding significant blood damage and reduced antioxidant defenses. Myrtle plant extract prevented these harmful effects, suggesting magnetic field exposure causes oxidative stress but natural compounds may offer protection.
Gupta SK, Mesharam MK, Krishnamurthy S. · 2018
Researchers exposed rats to 2450 MHz electromagnetic radiation (the frequency used by WiFi and microwave ovens) for one hour daily over 28 days and found significant cognitive impairment. The radiation damaged brain cell powerhouses called mitochondria, triggered cell death pathways, and disrupted the brain's chemical messaging system. This suggests that chronic exposure to common wireless frequencies may harm memory and thinking abilities through multiple biological mechanisms.
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. · 2018
Researchers exposed rats to cell phone frequencies (900 and 1800 MHz) for one hour daily, five days a week for an entire year, then examined brain tissue for damage. They found significant cellular damage including cell death, oxidative stress, and disrupted calcium channels in the hippocampus (memory center) and nerve tissues. The higher frequency (1800 MHz) caused more severe damage than the lower frequency, suggesting a dose-response relationship.
Budziosz J et al. · 2018
Researchers exposed rats to power-line frequency electromagnetic fields (50 Hz) for 28 days to study effects on brain oxidative stress, which occurs when harmful molecules damage cells. While overall oxidative stress markers remained unchanged, the study found decreased activity of protective antioxidant enzymes in most brain regions. This suggests that even when obvious damage isn't apparent, the brain's defense systems may be working harder under EMF exposure.
Errico Provenzano A et al. · 2018
Researchers exposed leukemia cells to 50Hz magnetic fields (the same frequency as power lines) to see how it affected cell development. They found that the magnetic field exposure helped cancer cells mature into normal, healthy blood cells when combined with a standard treatment. This suggests that extremely low frequency magnetic fields might influence how cells develop and could potentially affect blood cell formation in the body.
Medina-Fernandez FJ et al. · 2018
Researchers tested whether transcranial magnetic stimulation (TMS) using 60 Hz magnetic fields at 0.7 mT could help treat an animal model of multiple sclerosis. They found that TMS reduced brain inflammation and oxidative stress (cellular damage from unstable molecules) more effectively than standard pharmaceutical treatments. This suggests magnetic field therapy might have protective effects on the nervous system.
Li R et al. · 2018
Researchers exposed mouse sperm cells to cell phone-level radiofrequency radiation (4 W/kg SAR) for 24 hours and found it caused DNA damage. However, the cells activated a protective mechanism called autophagy (cellular self-cleaning) that helped reduce this damage. When researchers blocked this protective response, DNA damage increased significantly.
Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. · 2018
Researchers exposed rats to 50 Hz magnetic fields for 60 days and found significant changes in brain molecules that control gene expression. Young female rats showed the most dramatic effects, with altered patterns in both brain tissue and blood, suggesting chronic EMF exposure may disrupt normal brain function.
Hong I et al. · 2018
Researchers exposed rat brain cells to weak magnetic fields at 1 Hz and 10 Hz frequencies, finding both altered cellular energy processes, with 1 Hz having stronger effects. This demonstrates that magnetic fields can change how brain cells function biochemically, providing insights into magnetic stimulation's neural effects.
Kazemi M et al. · 2018
Researchers exposed four male rhesus monkeys to 12 Hz magnetic fields for four hours daily over 30 days. The monkeys showed significantly improved visual working memory and increased brain chemicals linked to learning. This suggests certain EMF frequencies might enhance cognitive function.
Laszlo AM et al. · 2018
Researchers exposed turkeys to 50 Hz magnetic fields (the type from power lines) for three weeks and found it disrupted their stress response system by reducing a key cellular signaling pathway called beta-adrenoceptor function. The birds' systems returned to normal after five weeks without exposure, suggesting the effects were reversible. This matters because it shows even relatively low-level magnetic field exposure can alter fundamental biological processes in living animals.
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018
Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.
Lasalvia M et al. · 2018
Researchers exposed human immune cells to 1.8 GHz cell phone radiation for up to 20 hours. The radiation caused cell deformation, DNA changes, and disrupted cellular energy production. These findings raise safety concerns about long-term EMF exposure effects on human health.
Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. · 2018
Turkish researchers exposed adolescent male rats to 900 MHz electromagnetic fields (the frequency used by many cell phones) for one hour daily throughout their entire teenage development period. They found significant nerve damage in the sciatic nerve, including structural changes and increased oxidative stress markers that indicate cellular damage. This suggests that regular EMF exposure during critical developmental periods may harm the peripheral nervous system.
Esmaeilpour K et al. · 2018
Researchers studied whether low-frequency electrical stimulation (1 Hz) could help reverse memory problems caused by seizures in rats. They found that applying brief electrical stimulation treatments after seizures not only restored learning and memory abilities but also protected brain cells from seizure-related damage. This suggests that controlled electrical stimulation might offer a therapeutic approach for treating cognitive problems in epilepsy patients.
Jeong YJ et al. · 2018
Researchers exposed middle-aged mice to cell phone-level radiofrequency radiation (1950 MHz) for 8 months to see if it worsened age-related brain damage. While the aging mice showed expected increases in brain oxidative stress, DNA damage, and inflammation markers, the RF exposure didn't make any of these problems worse. The study suggests that long-term exposure to this type of radiation may not accelerate brain aging processes.
Chauhan P, Verma HN, Sisodia R, Kesari KK. · 2017
Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used in WiFi and microwave ovens) for 2 hours daily over 35 days at very low power levels. The exposed rats showed significant tissue damage and oxidative stress in their brain, liver, kidney, testis, and spleen compared to unexposed control rats. This suggests that even low-level microwave radiation exposure over time may cause cellular damage throughout the body.
Roser K et al. · 2017
Swiss researchers tracked electromagnetic field exposure in 90 teenagers for three days. They discovered that teens' own mobile phones generated 67% of their total EMF exposure, while cell towers contributed only 20%. This shows personal device usage, not environmental sources, drives adolescent EMF exposure levels.
Cichoń N, Bijak M, Miller E, Saluk J. · 2017
Researchers studied 57 stroke patients who received either standard rehabilitation alone or rehabilitation plus daily exposure to extremely low frequency magnetic fields (40 Hz) for four weeks. Patients exposed to the magnetic fields showed improved antioxidant enzyme activity in their blood and better functional recovery, including enhanced daily living skills and reduced depression scores compared to the control group.
Eghlidospour M, Ghanbari A, Mortazavi SMJ, Azari H. · 2017
Iranian researchers exposed neural stem cells (brain cells that can develop into neurons) to radiation from a GSM 900-MHz mobile phone for different time periods. They found that longer exposures significantly reduced the cells' ability to multiply and form new neurons, though the cells didn't die. This suggests that cell phone radiation may interfere with the brain's natural ability to generate new brain cells, a process crucial for learning, memory, and brain repair.
Calcabrini C et al. · 2017
Researchers exposed human skin cells to 50 Hz electromagnetic fields for one hour. The fields caused temporary oxidative stress (cellular damage from harmful molecules) at moderate strengths, but cells recovered completely within 24 hours, suggesting no lasting harm occurs.
Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA · 2017
Researchers exposed rats to cell phone radiation for two months and found it caused brain damage in memory and movement areas. Green tea extract provided protection, but only when taken before or during exposure, not afterward. This suggests antioxidants may help prevent radiation-induced brain cell damage.