3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Personal Device EMF Research

RFELF Magnetic

Research on EMF from devices you carry or wear daily - phones, earbuds, smartwatches, and laptops.

3
Sources
3,372
Studies
2
EMF Types

Related Studies (1,772)

Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

Deshmukh PS et al. · 2013

Researchers exposed rats to extremely low-level microwave radiation at cell phone frequencies (900, 1800, and 2450 MHz) for two hours daily over 30 days and found DNA damage in brain tissue. The exposure levels were about 1,000 times lower than current safety limits, yet still caused measurable genetic damage. This suggests that even very weak microwave radiation can harm brain cells at the DNA level.

Maternal mobile phone exposure adversely affects the electrophysiological properties of Purkinje neurons in rat offspring

Haghani M, Shabani M, Moazzami K · 2013

Pregnant rats exposed to cell phone radiation (900 MHz) for six hours daily produced offspring with altered brain function. While the young rats behaved normally, their Purkinje neurons (cells controlling movement and learning) showed reduced electrical activity, suggesting prenatal exposure affects developing brain circuits.

Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons

Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013

Chinese researchers exposed stem cells from rat bone marrow to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily over 12 days. The electromagnetic field exposure helped these stem cells transform into functional brain neurons that could form connections and transmit electrical signals. This suggests that power-frequency magnetic fields might have therapeutic potential for treating nervous system diseases through stem cell therapy.

Changes in synaptic efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early postnatal age

Balassa T et al. · 2013

Researchers exposed pregnant and newborn rats to 50 Hz magnetic fields (household electricity frequency) during brain development. The exposure altered how brain cells communicate, increasing electrical activity but impairing the brain's ability to form new memories and connections during critical developmental periods.

50 Hz Electromagnetic Field Produced Changes in FTIR Spectroscopy Associated with Mitochondrial Transmembrane Potential Reduction in Neuronal-Like SH-SY5Y Cells.

Calabrò E et al. · 2013

Researchers exposed brain cells to 50 Hz magnetic fields (household electricity frequency) at different strengths. Higher exposures damaged cell membrane proteins and reduced energy production in mitochondria, leading to decreased cell survival and suggesting power-frequency fields harm basic cellular functions.

Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice.

Deng Y, Zhang Y, Jia S, Liu J, Liu Y, Xu W, Liu L. · 2013

Researchers exposed mice to power line frequency magnetic fields for 8 weeks and found significant brain damage including memory loss, brain cell death, and cellular stress markers. While exposure levels exceeded typical household amounts, the study demonstrates these electromagnetic fields can directly harm brain tissue.

The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure

Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013

Researchers exposed mice to 50 Hz magnetic fields (8 mT) for 28 days and found significant damage to learning and memory abilities, plus harmful oxidative stress in brain tissue. When mice were also given lotus seedpod extract, these negative effects were largely prevented. This suggests that extremely low frequency electromagnetic fields can damage brain function through oxidative stress mechanisms.

Effect of extremely low frequency magnetic field in prevention of spinal cord injury-induced osteoporosis.

Manjhi J, Kumar S, Behari J, Mathur R. · 2013

Researchers studied whether extremely low frequency magnetic fields could prevent bone loss in rats with spinal cord injuries. They exposed injured rats to 50 Hz magnetic fields (17.96 microTesla) for 2 hours daily over 8 weeks and found the treatment significantly prevented osteoporosis, maintaining bone density and mineral content compared to untreated injured rats. This suggests that specific magnetic field therapy might help preserve bone health after spinal cord injury.

Changes of dendritic spine density and morphology in the superficial layers of the medial entorhinal cortex induced by extremely low-frequency magnetic field exposure.

Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. · 2013

Researchers exposed rats to power line-frequency magnetic fields for 14-28 days and found significant damage to brain cell connections in the entorhinal cortex, a memory center. The exposure destroyed dendritic spines that enable brain cells to communicate, potentially explaining EMF-related cognitive problems.

Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation.

Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S · 2013

Researchers exposed human bone marrow stem cells to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla for several days. They found that this EMF exposure triggered the stem cells to transform into nerve cells by activating specific cellular pathways and generating reactive oxygen species (ROS). This suggests that power-frequency magnetic fields can directly influence how our stem cells develop and differentiate.

Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices

Atasoy HI, Gunal MY, Atasoy P, Elgun S, Bugdayci G · 2013

Researchers exposed young male rats to Wi-Fi radiation (2.4 GHz) 24 hours a day for 20 weeks and found significant DNA damage in their reproductive organs. The Wi-Fi exposure caused increased markers of genetic damage and reduced the activity of protective enzymes that normally defend against cellular harm. These findings suggest that chronic Wi-Fi exposure during development may threaten reproductive health and fertility.

The effect of prenatal exposure to 900-MHz electromagnetic field on the 21-old-day rat testicle.

Hancı H et al. · 2013

Researchers exposed pregnant rats to cell phone-level radiation (900 MHz) for one hour daily during late pregnancy, then examined the testicles of their male offspring at 21 days old. The exposed offspring showed significant damage to their developing reproductive organs, including structural abnormalities, increased cell death, and DNA damage that persisted weeks after birth. This suggests that EMF exposure during pregnancy may harm the reproductive development of male offspring.

Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z. · 2013

Researchers exposed mouse sperm cells to cell phone radiation (1800 MHz) for 24 hours and found that at higher exposure levels (4 W/kg SAR), the radiation caused oxidative DNA damage - essentially cellular rust that can harm genetic material. The damage occurred through reactive oxygen species (free radicals) rather than direct energy breaks, and could be prevented with antioxidants like vitamin E.

Changes in synaptic efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early postnatal age.

Balassa T et al. · 2013

Researchers exposed developing rats to 50 Hz magnetic fields (the same frequency as power lines) during critical brain development periods and found lasting changes in brain function. The exposed animals showed altered electrical activity in brain regions responsible for learning and memory, with some changes persisting weeks after exposure ended. This suggests that magnetic field exposure during early development may affect how the brain processes information later in life.

The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure.

Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013

Researchers exposed mice to 50 Hz magnetic fields (the type from power lines) for 28 days and found it damaged their learning, memory, and brain cells through oxidative stress. When mice were given lotus seedpod antioxidants during exposure, these harmful effects were largely prevented. This suggests that extremely low frequency EMF exposure can cause measurable brain damage, but antioxidants may offer some protection.

Changes of dendritic spine density and morphology in the superficial layers of the medial entorhinal cortex induced by extremely low-frequency magnetic field exposure.

Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. · 2013

Researchers exposed rats to magnetic fields from power lines for up to 28 days and found significant damage to brain cell connections in areas controlling memory and navigation. These structural changes to nerve cells could explain cognitive problems linked to EMF exposure.

STUDY OF VARIATIONS OF RADIOFREQUENCY POWER DENSITY FROM MOBILE PHONE BASE STATIONS WITH DISTANCE.

Ayinmode BO, Farai IP. · 2013

Researchers measured radiofrequency radiation levels at various distances from cell phone towers in Nigeria using calibrated equipment. They found the highest radiation levels occurred at 50-200 meters from the towers, with maximum readings of 2,972 µW/m². All measured levels were below international safety guidelines, suggesting people living near these towers face relatively low RF exposure.

Levels of electric field strength within the immediate vicinity of FM radio stations in Accra, Ghana.

Azah CK, Amoako JK, Fletcher JJ. · 2013

Researchers measured radio frequency radiation levels around 20 FM radio stations in Accra, Ghana, testing areas within 200 meters of transmission towers. They found extremely low electric field levels ranging from 0.000000074 to 0.00054 volts per meter - well below international safety guidelines. The study provides baseline data showing that FM radio stations in this urban area produce minimal RF exposure at ground level where people live and work.

Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD).

Banaceur S, Banasr S, Sakly M, Abdelmelek H. · 2013

Researchers exposed mice with Alzheimer's-like symptoms to WiFi signals (2.4 GHz) for two hours daily over a month at levels similar to cell phone exposure. Surprisingly, the WiFi exposure actually improved cognitive performance and memory in the Alzheimer's mice compared to unexposed mice. This unexpected finding suggests radiofrequency radiation might have therapeutic potential for certain brain conditions, though the mechanism remains unclear.

Effect of 900 MHz radıofrequency radıatıon on oxıdatıve stress In rat braın and serum.

Bilgici B, Akar A, Avci B, Tuncel OK. · 2013

Researchers exposed rats to cell phone-level radiofrequency radiation (900 MHz) for one hour daily over three weeks and measured damage markers in brain tissue. The study found significant increases in two key indicators of cellular damage - lipid oxidation and protein damage - in the brain tissue of exposed animals. Interestingly, rats given garlic powder showed protection against this brain damage, suggesting antioxidants may help counteract RF radiation effects.

FAQs: EMF in Personal Devices & Wearables

The personal devices & wearables environment contains several common sources of electromagnetic field exposure including cell phones, laptops, bluetooth devices. Together, these 3 sources account for 3,372 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 3,372 peer-reviewed studies in our database examining EMF sources commonly found in personal devices & wearables environments. These studies cover 3 different EMF sources: Cell Phones (1,326 studies), Laptops (1,772 studies), Bluetooth Devices (274 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Laptops has the most research with 1,772 studies, followed by Cell Phones (1,326) and Bluetooth Devices (274). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in personal devices & wearables settings.