3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Personal Device EMF Research

RFELF Magnetic

Research on EMF from devices you carry or wear daily - phones, earbuds, smartwatches, and laptops.

3
Sources
3,372
Studies
2
EMF Types

Related Studies (1,772)

Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells.

Del Vecchio G et al. · 2009

Italian researchers exposed developing brain cells to cell phone radiation at levels similar to what phones emit (1 W/kg SAR at 900 MHz). They found that this radiation significantly reduced the growth of neurites - the branch-like extensions that neurons use to connect and communicate with each other. This suggests that cell phone radiation may interfere with normal brain cell development and connection formation.

Radioprotective effects of honeybee venom (Apismellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study.

Gajski G, Garaj-Vrhovac V. · 2009

Researchers exposed rat blood cells to 915-MHz microwave radiation (similar to cell phone frequencies) for 30 minutes and found it caused DNA damage. However, when they pre-treated the cells with honeybee venom, the DNA damage was significantly reduced. This suggests that certain natural compounds might help protect our cells from radiofrequency radiation damage.

Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872MHz radiofrequency radiation.

Luukkonen J et al. · 2009

Researchers exposed human brain cells to radiofrequency radiation at 872 MHz (similar to older cell phone frequencies) combined with a chemical that creates cellular damage. They found that continuous wave RF radiation at high intensity (5 W/kg SAR) increased both harmful oxygen molecules and DNA damage compared to the chemical alone. Interestingly, pulsed signals like those used in GSM phones showed no such effects, even at the same power level.

900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat

Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S · 2009

Researchers exposed female rats to cell phone radiation (900 MHz) for one hour daily over 28 days. They found significant loss of brain cells in the hippocampus, the brain region responsible for memory and learning, raising concerns about potential effects from regular phone use.

Mobile phones exposure induces changes of contingent negative variation in humans

de Tommaso M et al. · 2009

Italian researchers exposed 10 volunteers to cell phone radiation at 900 MHz and measured their brain's electrical activity using EEG. They found that both active phones and phones with blocked radiation (but still powered on) reduced brain arousal and expectation responses compared to phones that were completely off. This suggests that cell phone exposure affects how the brain processes and anticipates information.

Continuous exposure to 900MHz GSM-modulated EMF alters morphological maturation of neural cells

Del Vecchio G et al. · 2009

Italian researchers exposed developing brain cells to cell phone radiation at the same power level your phone uses during calls (1 W/kg SAR). The radiation significantly reduced the number of neural branches that normally grow as brain cells mature, suggesting cell phone signals may interfere with normal brain development. This finding raises concerns about wireless exposure during critical periods of brain development in children and adolescents.

Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone.

Nittby H et al. · 2009

Researchers exposed rats to cell phone radiation at various power levels for 2 hours, then examined their brains 7 days later. They found that the blood-brain barrier (the protective shield that normally keeps toxins out of the brain) became more permeable, allowing proteins to leak into brain tissue. This suggests that even a single exposure to cell phone radiation can compromise the brain's protective barrier for at least a week.

Effect of short-term 50 Hz electromagnetic field exposure on the behavior of rats.

Balassa T, Szemerszky R, Bárdos G. · 2009

Researchers exposed rats to 50 Hz magnetic fields at 500 microtesla (the workplace safety limit) for 20 minutes and found the animals became more passive and anxious in behavioral tests. The magnetic field exposure increased situational anxiety and reduced activity levels, though it didn't affect social behaviors. This suggests that even brief exposure to magnetic fields at legally permitted levels can alter brain function and behavior.

Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain.

Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. · 2009

Researchers exposed rats to extremely low frequency magnetic fields (the same type produced by power lines and household appliances) for up to 7 days and measured changes in brain chemistry. They found that these magnetic fields altered serotonin receptors in the brain's prefrontal cortex, with effects becoming more pronounced after longer exposure periods. This matters because serotonin plays a crucial role in mood, sleep, and behavior regulation.

Mobile Phone Radiation Induces Reactive Oxygen Species Production and DNA Damage in Human Spermatozoa In Vitro.

De Iuliis GN, Newey RJ, King BV, Aitken RJ. · 2009

Researchers exposed human sperm to cell phone radiation at 1.8 GHz frequencies. Higher radiation levels reduced sperm movement and survival while increasing DNA damage and harmful molecules. The findings suggest that heavy mobile phone use could potentially affect male fertility and future children's health.

Spatial memory performance of Wistar rats exposed to mobile phone.

Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M · 2009

Researchers exposed rats to mobile phone signals (50 missed calls daily for 4 weeks) and then tested their ability to navigate a water maze to find a hidden platform. Phone-exposed rats took 3 times longer to find the target area and spent half as much time in the correct location compared to unexposed rats. This suggests mobile phone radiation may impair spatial memory and learning ability.

Results of a long-term low-level microwave exposure of rats.

Adang D, Remacle C, Vorst AV. · 2009

Belgian researchers exposed rats to 970-MHz microwave radiation (similar to cell phone frequencies) for 2 hours daily over 21 months and measured changes in blood cells and mortality. They found significant increases in white blood cells and changes in immune cell types, plus a striking finding: exposed rats had nearly twice the mortality rate of unexposed rats by the end of the study. This suggests that chronic low-level microwave exposure may compromise immune function and overall health over time.

Effect of electromagnetic field induced by radio frequency waves at 900 to 1800 MHz on bone mineral density of iliac bone wings.

Atay T et al. · 2009

Turkish researchers measured bone density in the hip area of 150 men who regularly carried cell phones for an average of 6.2 years and 14.7 hours daily. They found slightly lower bone density on the side where phones were carried compared to the unexposed side, though the difference wasn't statistically significant. The findings suggest that long-term phone carrying might affect bone health in ways that could matter for medical procedures requiring bone grafts.

Effects of intrauterine and extrauterine exposure to GSM-like radiofrequency on distortion product otoacoustic emissions in infant male rabbits.

Budak GG, Muluk NB, Budak B, Oztürk GG, Apan A, Seyhan N. · 2009

Researchers exposed infant rabbits to cell phone radiation (1800 MHz) both before birth (in the womb) and after birth, then measured their hearing function using specialized tests. They found that exposure after birth decreased hearing sensitivity at certain frequencies, while exposure before birth appeared to have a protective effect. The study suggests that developing ears may be particularly vulnerable to radiofrequency radiation from mobile phones.

Spatial memory performance of Wistar rats exposed to mobile phone.

Narayanan SN, Kumar RS, Potu BK, Nayak S, Mailankot M. · 2009

Researchers exposed rats to mobile phone signals for 4 weeks (50 missed calls daily) and then tested their ability to navigate a water maze to find a hidden platform. The phone-exposed rats took three times longer to find the target area and spent half as much time in the correct location compared to unexposed rats. This suggests that mobile phone radiation may impair spatial memory and learning abilities.

Brain & Nervous SystemNo Effects Found

Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration

de Gannes FP et al. · 2009

French researchers exposed rats' heads to cell phone radiation (900 MHz GSM) for 2 hours to test whether it damages the blood-brain barrier (the protective layer around the brain) or kills brain cells. They found no evidence of brain damage or barrier leakage at exposure levels both below and above typical cell phone use. This study contradicted earlier research that had suggested cell phone radiation could harm the brain's protective barrier.

Brain & Nervous SystemNo Effects Found

Heat shock protein induction in fetal mouse brain as a measure of stress after whole of gestation exposure to mobile telephony radiofrequency fields

Finnie JW, Chidlow G, Blumbergs PC, Manavis J, Cai Z · 2009

Researchers exposed pregnant mice to 900 MHz cell phone radiation (at 4 W/kg) for one hour daily throughout pregnancy to see if it caused stress in developing fetal brains. They found no evidence of cellular stress responses when they examined the brain tissue using specialized markers called heat shock proteins. This suggests that this level of radiofrequency exposure during pregnancy may not trigger detectable stress responses in developing brain tissue.

Brain & Nervous SystemNo Effects Found

Effects of UMTS cellular phones on human hearing: results of the European project EMFnEAR

Parazzini M et al. · 2009

Researchers exposed 134 healthy young adults to 20 minutes of radiofrequency radiation from UMTS mobile phones at maximum power while testing their hearing function before and after exposure. The study found no consistent changes in hearing ability, ear function, or auditory processing after the RF exposure. This suggests that short-term exposure to cell phone radiation at typical usage levels does not cause immediate measurable damage to human hearing.

Oxidative StressNo Effects Found

Antioxidants alleviate electric field-induced effects on lung tissue based on assays of heme oxygenase-1, protein carbonyl content, malondialdehyde, nitric oxide, and hydroxyproline.

Güler G, Türközer Z, Ozgur E, Seyhan N. · 2009

Researchers exposed lung tissue to extremely strong electric fields (12,000 volts per meter) for 8 hours daily over 7 days to test whether antioxidants could prevent damage. They found only minor increases in one marker of cellular damage (protein carbonyl), while other damage indicators remained unchanged. The study suggests that at these exposure levels, electric fields cause minimal lung tissue damage that antioxidants may help prevent.

Immune SystemNo Effects Found

A confirmation study of Russian and Ukrainian data on effects of 2450 MHz microwave exposure on immunological processes and teratology in rats.

de Gannes FP et al. · 2009

French researchers exposed pregnant rats to 2450 MHz microwave radiation (the same frequency used in microwave ovens and WiFi) for 7 hours daily over 30 days to test whether this exposure affects immune function or causes birth defects. They found no effects on immune system markers or fetal development at the power levels tested. This study was designed to confirm earlier Russian and Ukrainian research that had suggested potential harmful effects.

Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity.

Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. · 2008

Researchers exposed neural stem cells from newborn mice to extremely low frequency electromagnetic fields (50 Hz at 1 mT) and found that this exposure significantly promoted the development of these cells into mature neurons. The electromagnetic fields worked by increasing the activity of specific calcium channels in the cells, which are crucial for brain cell development. This suggests that power-frequency EMF exposure can directly influence how brain cells develop and mature.

FAQs: EMF in Personal Devices & Wearables

The personal devices & wearables environment contains several common sources of electromagnetic field exposure including cell phones, laptops, bluetooth devices. Together, these 3 sources account for 3,372 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 3,372 peer-reviewed studies in our database examining EMF sources commonly found in personal devices & wearables environments. These studies cover 3 different EMF sources: Cell Phones (1,326 studies), Laptops (1,772 studies), Bluetooth Devices (274 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Laptops has the most research with 1,772 studies, followed by Cell Phones (1,326) and Bluetooth Devices (274). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in personal devices & wearables settings.