Wang LL, Chen GD, Lu DQ, Chiang H, Xu ZP. · 2006
Researchers exposed breast cancer cells (MCF-7) to cell phone radiation at 1800 MHz for 24 hours to see if it would change gene activity. They found essentially no meaningful changes in gene expression, even when using exposure levels higher than typical cell phone use. The study suggests that this type of radiation may not significantly alter how genes function in these particular cells.
Shen YH, Yu D, Fu YT, Chiang H. · 2006
Chinese researchers exposed 500 female rats to cell phone radiation (900 MHz GSM signals) for 4 hours daily over 26 weeks after giving them a chemical known to cause breast tumors. They tested different radiation levels, including some well above typical phone exposure. The study found no difference in breast cancer rates between exposed and unexposed rats - about one-third developed tumors regardless of radiation exposure.
Lixia S et al. · 2006
Scientists exposed human eye lens cells to cell phone radiation at different power levels for 2 hours. At the highest level (3 W/kg), cells showed temporary DNA breaks and increased protective proteins, suggesting cellular defense mechanisms activate when exposed to wireless radiation.
Lixia S et al. · 2006
Researchers exposed human eye lens cells to cell phone radiation at different power levels for 2 hours. Higher exposures caused temporary DNA damage and triggered cellular stress responses, suggesting that phone radiation can affect eye cells even without heating tissue.
Aksen F, Akdag MZ, Ketani A, Yokus B, Kaya A, Dasdag S. · 2006
Scientists exposed female rats to 50-Hz magnetic fields (household electrical frequency) for 50-100 days. The study found significant cellular damage in ovaries and uterus, including broken cell structures and increased oxidative stress. This suggests prolonged exposure to common electrical frequencies may harm female reproductive organs.
Jelenković A et al. · 2006
Researchers exposed rats to magnetic fields from power lines for seven days and found increased brain damage from harmful free radicals. The damage was worst in brain areas controlling memory and decision-making, suggesting these common electromagnetic fields may harm brain cells.
Reale M et al. · 2006
Researchers exposed human immune cells called monocytes to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla overnight. They found the fields altered production of two important immune signaling molecules: reducing nitric oxide synthase (which helps fight infections) while increasing MCP-1 (which attracts immune cells to sites of inflammation). These changes suggest power-frequency magnetic fields can disrupt normal immune system function.
Pavicic I, Trosic I, Sarolic A · 2006
Croatian researchers exposed lab cells to microwave frequencies from older cell phones (864 MHz and 935 MHz) at low power levels. Both frequencies significantly altered cell growth patterns after exposure, with one slowing growth and the other accelerating it, suggesting cellular disruption below current safety limits.
Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E. · 2006
Researchers exposed rats to 50 Hz electromagnetic fields (power line frequency) for six months and found increased brain damage from oxidative stress. When rats received zinc supplements, brain damage was significantly reduced, suggesting zinc may protect against EMF-induced cellular harm.
Calota V, Dragoiu S, Meghea A, Giurginca M · 2006
Researchers exposed human blood serum to 50 Hz electric fields (the same frequency as household electrical systems) for 1-2 hours and measured changes in free radical activity. They found that exposure reduced free radical concentrations in the blood compared to unexposed samples. This suggests that extremely low frequency electric fields can alter the body's oxidative processes at the cellular level.
Jeong JH, Kum C, Choi HJ, Park ES, Sohn UD. · 2006
Researchers exposed mice to 60 Hz magnetic fields from household electricity and found it increased their pain sensitivity. The magnetic fields triggered nitric oxide production in the brain and spinal cord, lowering pain thresholds. This suggests common electrical frequencies may directly affect pain processing.
Papageorgiou CC et al. · 2006
Researchers exposed 19 healthy adults to 900 MHz mobile phone radiation while measuring their brain activity during a working memory test. The radiation significantly altered brain wave patterns called P50 components, which reflect how the brain processes information before conscious awareness. These changes suggest that mobile phone emissions can affect fundamental brain processing, even during brief exposures.
Vian A et al. · 2006
Researchers exposed tomato plants to 900 MHz microwave radiation (similar to cell phone frequencies) for just 5-15 minutes and found it triggered a strong stress response at the genetic level. The plants produced 3.5 times more stress-related proteins, showing their cells recognized the radiation as harmful. This demonstrates that even brief, low-level microwave exposure can cause biological effects in living organisms.
Lantow M, Schuderer J, Hartwig C, Simko M. · 2006
Researchers exposed human immune cells to 1800 MHz radiofrequency radiation (the same frequency used by GSM cell phones) at various power levels to see if it would trigger free radical production or stress protein responses. They found no significant effects on either measure, even at exposure levels up to 2.0 W/kg. This suggests that RF radiation at these levels doesn't cause oxidative stress in these particular immune cell types.
Verschaeve L et al. · 2006
Researchers exposed female rats to cell phone radiation (900 MHz) for 2 years while also giving them a known cancer-causing chemical in their drinking water to see if the radiation would make DNA damage worse. They found that the radiation alone didn't cause genetic damage, and it didn't increase the DNA damage caused by the chemical. This suggests that long-term exposure to cell phone-level radiation may not enhance the harmful effects of other toxins on our genetic material.
Qutob SS et al. · 2006
Researchers exposed human brain cancer cells (glioblastoma) to 1.9 GHz radiofrequency radiation for 4 hours at power levels ranging from very low to quite high (0.1 to 10 W/kg SAR). They found no changes in gene expression at any exposure level, while heat treatment successfully triggered expected cellular stress responses. This suggests that RF fields at these levels don't alter how genes function in these particular brain cells.
Remondini D et al. · 2006
Researchers exposed six different types of human cells to mobile phone frequencies (900 and 1800 MHz) and analyzed whether the radiation changed gene activity patterns. Three cell types showed no changes, while three others had small numbers of genes (12-34) that became more or less active, particularly genes involved in protein production. The changes didn't indicate cellular stress or damage responses.
Scarfi MR et al. · 2006
Researchers exposed human blood cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) for 24 hours at various power levels to see if it caused DNA damage or affected cell growth. The study found no evidence of genetic damage or harmful effects on the cells, even at exposure levels up to 10 watts per kilogram. Two independent laboratories confirmed these results using cells from 10 different healthy volunteers.
Thorlin et al. · 2006
Swedish researchers exposed brain glial cells (support cells that protect neurons) to 900 MHz radiation at various power levels for up to 24 hours to see if it would trigger inflammatory responses or cellular damage. They found no significant effects on inflammatory markers, cellular proteins, or cell structure at any exposure level tested. The study suggests that short-term exposure to 900 MHz radiation at these levels does not cause detectable damage to these important brain cells in laboratory conditions.
Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. · 2005
Researchers exposed mice to cell phone-level radiation (900 MHz) for 12 hours daily over a week and examined sperm DNA for damage. While the mice appeared healthy and sperm counts looked normal, detailed genetic analysis revealed significant DNA damage in both the mitochondria (cellular powerhouses) and nuclear DNA of sperm cells. This suggests that radiofrequency radiation can harm genetic material in reproductive cells even when other measures appear normal.
Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E. · 2005
Researchers exposed rats to 900 MHz cell phone radiation for 30 minutes daily over 10 days and found significant kidney damage, including increased oxidative stress markers and reduced antioxidant defenses. The study also showed that melatonin (a natural hormone) completely protected against this kidney damage when given before radiation exposure. This suggests that cell phone radiation can harm organs beyond the brain, particularly the kidneys which absorb radiation when phones are carried on belts or in pockets.
Oktem F, Ozguner F, Mollaoglu H, Koyu A, Uz E · 2005
Researchers exposed rats to 900-MHz cell phone radiation for 30 minutes daily over 10 days and found significant kidney damage through oxidative stress (cellular damage from harmful molecules called free radicals). The study showed increased markers of kidney damage and reduced antioxidant defenses, but when rats were given melatonin before exposure, these harmful effects were largely prevented.
Loughran SP et al. · 2005
Researchers exposed 50 people to electromagnetic fields from mobile phones for 30 minutes before bedtime and monitored their sleep patterns. They found that phone exposure shortened the time it took to enter REM (dream) sleep and altered brain wave activity during the first part of sleep. This suggests that using your phone before bed can directly change how your brain functions during sleep.
Huber R et al. · 2005
Swiss researchers exposed 12 healthy men to cell phone-like radio frequency radiation for 30 minutes and used brain scans to measure blood flow changes. They found that exposure increased blood flow in the brain's frontal cortex, but only when the signal was pulse-modulated like actual cell phones (not steady signals like cell towers). This demonstrates that cell phone radiation can measurably alter brain activity within just 30 minutes of exposure.
Ozguner M et al. · 2005
Turkish researchers exposed male rats to 900 MHz radiofrequency radiation (similar to cell phones) for 30 minutes daily over 4 weeks and examined effects on reproductive organs. While the study found decreased testosterone levels and some structural changes in testicular tissue, the researchers concluded these changes did not significantly impact sperm production or overall reproductive function. The findings suggest cell phone-type radiation may cause hormonal changes but may not severely impair male fertility at these exposure levels.