3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 16 studies (Microorganisms)

Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress.

Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls A · 2019

Researchers exposed baker's yeast (Saccharomyces cerevisiae) to a strong static magnetic field of 250 millitesla for 6 to 9 hours to study biological effects. They found the magnetic field initially reduced yeast growth and survival, then triggered oxidative stress - a harmful cellular condition where damaging molecules overwhelm the cell's natural defenses. The study demonstrated that even simple organisms like yeast respond to magnetic field exposure with measurable biological changes.

Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli.

Taheri M et al. · 2017

Researchers exposed two types of bacteria (Listeria and E. coli) to radiofrequency radiation from cell phones (900 MHz) and Wi-Fi routers (2.4 GHz) to see if it affected how well antibiotics worked against them. They found that RF exposure made these disease-causing bacteria more resistant to antibiotics, meaning the medications became less effective at killing them. This could have serious implications for treating infections, as it suggests our wireless devices might be contributing to the growing problem of antibiotic-resistant bacteria.

Generation and propagation of yeast prion [URE3] are elevated under electromagnetic field.

Lian HY, Lin KW, Yang C, Cai P. · 2017

Researchers exposed yeast cells to radiofrequency radiation (2.0 GHz) and extremely low frequency fields (50 Hz) to study effects on protein misfolding. They found that both types of electromagnetic fields increased the formation and spread of prions (misfolded proteins linked to neurodegenerative diseases) in a dose-dependent manner. This suggests EMF exposure may contribute to protein misfolding disorders through oxidative stress mechanisms.

Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa

Hanini R, Chatti A, Ghorbel SB, Landoulsi A. · 2017

Researchers exposed bacteria (Pseudomonas aeruginosa) to a static magnetic field of 200 mT and found that strains lacking protective antioxidant enzymes suffered significantly more cellular damage than normal strains. The magnetic field exposure increased oxidative stress markers and triggered the bacteria's natural defense systems, with weaker strains showing higher levels of cellular damage. This demonstrates that even static magnetic fields can cause biological stress that cells must actively defend against.

Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium.

Nasri K, Daghfous D, Landoulsi A. · 2013

Researchers exposed Salmonella bacteria to 2.45 GHz microwave radiation (the same frequency as WiFi and microwave ovens) for 40 seconds and found it significantly damaged the bacteria's cell membranes. The radiation altered the fatty acid composition of the cell walls and made the bacteria more vulnerable to antibiotics. This demonstrates that microwave radiation can cause measurable biological changes at the cellular level, even in simple organisms like bacteria.

Effects of ELF Magnetic Field in Combination with Iron(III) Chloride (FeCl3) on Cellular Growth and Surface Morphology of Escherichia coli (E. coli)

Esmekaya MA et al. · 2013

Scientists exposed E. coli bacteria to power line frequency magnetic fields for 24 hours. While the bacteria survived and reproduced normally, the electromagnetic exposure damaged their cell surfaces, creating holes and destroying outer membranes. This shows EMF can cause cellular damage even when organisms appear healthy.

Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression.

Chen G, Lu D, Chiang H, Leszczynski D, Xu Z · 2012

Researchers exposed yeast cells to both 50 Hz magnetic fields and 1800 MHz radiofrequency radiation to see if electromagnetic fields could change gene activity. They found that magnetic fields caused no confirmed gene changes, while radiofrequency exposure affected only 2-5 genes out of thousands tested. This suggests that EMF effects on basic cellular processes may be more limited than some studies indicate.

Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression.

Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. · 2012

Researchers exposed yeast cells to power line magnetic fields and cell phone radiation for six hours to study genetic changes. Magnetic fields caused no confirmed gene alterations, while cell phone radiation changed only two genes out of thousands tested, suggesting minimal genetic impact.

Cellular EffectsNo Effects Found

Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

Cranfield CG, Wieser HG, Dobson J. · 2003

Researchers exposed magnetic bacteria (bacteria containing magnetite particles) to radio frequency radiation similar to that emitted by GSM mobile phones to test whether RF signals cause cell death. They found no increase in bacterial mortality from RF exposure compared to sham (fake) exposures, suggesting that RF radiation alone doesn't kill these magnetite-containing cells. This challenges earlier findings that direct mobile phone exposure harmed similar bacteria, pointing researchers toward other components of phone emissions like low-frequency magnetic pulses.

No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast saccharomyces cerevisiae.

Gos P, Eicher B, Kohli J, Heyer WD · 2000

Scientists tested whether 900 MHz mobile phone radiation could damage DNA in yeast cells using multiple genetic tests. They found no evidence of mutations, DNA damage, or cellular dysfunction, even when combined with known toxic chemicals, suggesting these radiation levels may not directly harm genetic material.

DNA & Genetic DamageNo Effects Found

Bacterial mutation in high magnetic fields and radiofrequency radiation

Mineta M et al. · 1999

Japanese researchers exposed bacteria commonly used in genetic testing to extremely strong magnetic fields (6.3 Tesla) combined with radiofrequency radiation similar to what's found in MRI machines for up to one hour. They found no increase in genetic mutations compared to unexposed bacteria, suggesting that MRI-level electromagnetic exposures don't cause DNA damage in this bacterial model.

[Two-step exposure of biological objects to infrared laser and microwave radiation].

Kol'tsov IuV, Korolev VN, Kusakin SA, · 1999

Researchers exposed bacteria to both infrared laser light and microwave radiation to see how the two types of energy interact. They found that microwave radiation significantly amplifies the biological effects of laser radiation, even though microwaves alone required much lower doses to trigger cellular responses. This suggests that combining different types of electromagnetic energy can produce stronger biological effects than either type alone.

Cellular EffectsNo Effects Found

Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells.

Gos, P, Eicher, B, Kohli, J, Heyer, WD · 1997

Researchers exposed yeast cells (Saccharomyces cerevisiae) to extremely high frequency electromagnetic fields around 41.7 GHz at very low power levels to see if the radiation affected how quickly the cells divided. After careful testing with proper controls, they found no significant differences in cell division rates between exposed and unexposed yeast. This contradicts some earlier studies that claimed to find biological effects from similar EMF exposures.

Resonance effect of millimeter waves in the power range from 10(-19) to 3 x 10(-3) W/cm2 on Escherichia coli cells at different concentrations.

Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA · 1996

Russian researchers exposed E. coli bacteria to extremely weak millimeter waves (similar to 5G frequencies) and found that the bacteria's genetic material changed its physical structure in response. The effect occurred at specific frequencies and happened even at power levels trillions of times weaker than typical wireless device emissions. This suggests that biological systems can detect and respond to radiofrequency radiation at far lower intensities than previously thought possible.

Inactivation of Lactobacillus bacteriophage PL-1 by microwave irradiation.

Kakita Y et al. · 1995

Japanese researchers exposed bacteriophages (viruses that infect bacteria) to 2,450 MHz microwave radiation using a standard microwave oven to study how the radiation affects viral survival. They found that microwave exposure inactivated the viruses by breaking their DNA, but this damage was caused by the heat generated by the microwaves rather than the electromagnetic fields themselves. Importantly, the microwave-generated heat was much more damaging to the viral DNA than the same temperature applied through conventional heating methods.

Browse by Health Effect