3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Topics

Brain & Nervous System

5 min read
Share:
Key Finding: 78% of 1,644 studies on brain & nervous system found biological effects from EMF exposure.

Of 1,644 studies examining brain & nervous system, 78% found measurable biological effects from EMF exposure.

Lowest Documented Effect

Research found effects on brain & nervous system at exposures as low as:

Study Exposure Level in ContextA logarithmic scale showing exposure levels relative to Building Biology concern thresholds and regulatory limits.Study Exposure Level in Context0.0000000043Extreme Concern5 mGFCC Limit2,000 mGEffects observed in the No Concern range (Building Biology)FCC limit is 465,116,279,070x higher than this exposure level

Research Overview

  • -When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research.
  • -Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
  • -This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health. This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

Henry Lai's comprehensive analysis of peer-reviewed research, 91% of studies examining extremely low frequency fields found biological effects on the nervous system, while 72% of radiofrequency studies showed similar impacts.

The scientific evidence demonstrates that radiofrequency electromagnetic fields from mobile phones and wireless devices produce measurable effects on nervous system function and cellular processes in the brain.

Source: BioInitiative Working Group. BioInitiative Report: A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Radiation. Edited by Cindy Sage and David O. Carpenter, BioInitiative, 2012, updated 2020. www.bioinitiative.org

Research Statistics by EMF Type

EMF TypeStudiesShowing EffectsPercentage
ELF22920891.00%
RF30522272.00%

Source: Dr. Henry Lai research database, BioInitiative Report

Showing 1,644 studies

Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations.

Hutter HP, Moshammer H, Wallner P, Kundi M. · 2006

Researchers measured EMF exposure from cell phone towers in the bedrooms of 365 people living nearby and tested their health and thinking abilities. Even though the radiation levels were extremely low (far below safety guidelines), people closer to the towers reported more headaches and showed changes in mental performance. This suggests that even very weak EMF exposure from cell towers might affect how people feel and think.

Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes.

Espinosa JM, Liberti M, Lagroye I, Veyret B. · 2006

Scientists exposed rat brain tissue to magnetic fields from power lines and found significant changes in serotonin receptors that control mood and sleep. One hour of exposure at levels found near electrical equipment altered brain chemistry, demonstrating that common magnetic field exposure can directly affect how brain cells function.

Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation.

Belyaev IY et al. · 2006

Scientists exposed rats to cell phone radiation at 915 MHz for 2 hours and found it changed gene activity in the brain without causing DNA breaks. The radiation altered the expression of 12 genes involved in brain functions like neurotransmitter regulation, the blood-brain barrier, and melatonin production. This suggests that even brief cell phone exposure can trigger biological changes in brain cells, even when DNA damage isn't detectable.

Psychophysiological tests and provocation of subjects with mobile phone related symptoms

Wilen J, Johansson A, Kalezic N, Lyskov E, Sandstrom M · 2006

Swedish researchers exposed 20 people who experience symptoms from mobile phones (like headaches or fatigue) and 20 people without such symptoms to 30 minutes of GSM cell phone radiation at 1 W/kg SAR. While the radiation exposure itself didn't cause measurable changes in either group, the symptomatic individuals showed different nervous system patterns during cognitive tests, suggesting their autonomic nervous systems may respond differently to stress regardless of EMF exposure.

Single strand DNA breaks in rat brain cells exposed to microwave radiation.

Paulraj R, Behari J. · 2006

Researchers exposed developing rat brains to microwave radiation at frequencies used in WiFi (2.45 GHz) and other wireless devices (16.5 GHz) for 35 days. They found statistically significant increases in DNA single strand breaks in brain cells compared to unexposed rats. This suggests that chronic microwave exposure during brain development may cause genetic damage that could potentially lead to long-term health problems.

Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation.

Belyaev IY et al. · 2006

Researchers exposed rats to cell phone radiation for 2 hours at typical usage levels. While no DNA damage occurred, the radiation altered 12 brain genes controlling neurotransmitters, blood-brain barrier function, and melatonin production, showing that brief phone exposure can trigger biological changes in brain cells.

Single strand DNA breaks in rat brain cells exposed to microwave radiation

Paulraj R, Behari J. · 2006

Researchers exposed young rats to microwave radiation at frequencies used in WiFi and other wireless technologies for 35 days, then examined their brain cells for DNA damage. The study found statistically significant increases in single-strand DNA breaks in brain cells of exposed animals compared to controls. This suggests that chronic exposure to these common wireless frequencies may damage genetic material in developing brain tissue.

Brain & Nervous SystemNo Effects Found

Mobile phone use-Effects of handheld and handsfree phones on driving performance.

Tornros JE, Bolling AK. · 2005

Researchers tested 48 drivers using mobile phones while navigating simulated driving courses to measure how phone use affects driving performance and mental workload. They found that both handheld and hands-free phone use significantly impaired drivers' ability to detect peripheral events and maintain proper vehicle control, indicating increased mental strain regardless of phone type. The study reveals that hands-free devices don't eliminate the cognitive distraction that makes phone use dangerous while driving.

Brain & Nervous SystemNo Effects Found

Can mobile phone emissions affect auditory functions of cochlea or brain stem?

Sievert U, Eggert S, Pau HW · 2005

German researchers tested whether mobile phone emissions affect hearing by measuring auditory brain stem responses in 12 healthy volunteers before, during, and after exposure to both pulsed and continuous electromagnetic fields from standardized mobile phones. They found no changes in hearing function or brain stem responses during the short-term exposure period, though they acknowledged their study couldn't rule out potential long-term effects.

Cancer & TumorsNo Effects Found

Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats

Shirai T et al. · 2005

Japanese researchers exposed rats to cell phone radiation (1.439 GHz) for 2 years to see if it would promote brain tumors in animals already given a cancer-causing chemical. The EMF exposure did not increase tumor rates or accelerate brain cancer development at either exposure level tested (0.67 or 2.0 W/kg SAR). This suggests that chronic cell phone radiation exposure may not promote brain tumor growth, at least under these specific experimental conditions.

Cancer & TumorsNo Effects Found243 citations

Mobile phone use and risk of acoustic neuroma: results of the Interphone case-control study in five North European countries

Schoemaker MJ et al. · 2005

Researchers studied 678 people with acoustic neuroma (a type of brain tumor near the ear) and compared their mobile phone use to 3,553 healthy controls across five Northern European countries. Overall, regular mobile phone use did not increase the risk of developing these tumors. However, people who used phones for 10 years or longer on the same side of their head where the tumor developed showed an 80% increased risk, suggesting long-term use may pose concerns.

Brain & Nervous SystemNo Effects Found

No influence on selected parameters of human visual perception of 1970 MHz UMTS-like exposure.

Schmid G, Sauter C, Stepansky R, Lobentanz IS, Zeitlhofer J · 2005

Researchers exposed 58 healthy adults to UMTS (3G) mobile phone signals at levels similar to actual phone use and tested whether this affected their visual perception through four different eye tests. They found no measurable differences in visual performance between exposure to the radio frequency signals and fake (sham) exposure. This suggests that 3G mobile phone radiation at typical usage levels does not impair basic visual processing abilities.

Brain & Nervous SystemNo Effects Found116 citations

Effect of 902 MHz mobile phone transmission on cognitive function in children.

Preece AW et al. · 2005

Researchers tested whether cell phone radiation at 902 MHz affects thinking and reaction time in 18 children ages 10-12. While children showed slightly faster reaction times during phone exposure compared to no exposure, the differences were not statistically significant. The study failed to replicate earlier findings in adults, possibly because it used a weaker GSM phone rather than the more powerful analog phone used in previous research.

Brain & Nervous SystemNo Effects Found

Can electromagnetic fields emitted by mobile phones stimulate the vestibular organ?

Pau HW, Sievert U, Eggert S, Wild W · 2005

German researchers tested whether mobile phone radiation could affect balance by heating the inner ear enough to trigger dizziness (similar to how hot water in the ear causes vertigo during medical tests). They exposed 13 volunteers to GSM phone signals at 889.6 MHz while monitoring their eyes for involuntary movements that would indicate balance disruption. The study found no balance effects and confirmed that phone radiation barely heats tissue beyond the surface layer, with temperature increases less than 0.1°C in the inner ear structures responsible for balance.

Cellular EffectsNo Effects Found

Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells.

Miyakoshi J et al. · 2005

Researchers exposed human brain tumor cells to 1950 MHz radiofrequency radiation (similar to 3G cell phone frequencies) at various intensities for up to 2 hours. While the radiation didn't affect cell growth or activate major stress response proteins, it did reduce a specific cellular protection mechanism at the highest exposure level (10 W/kg). This suggests that even when cells appear unaffected, subtle molecular changes may still be occurring.

Cancer & TumorsNo Effects Found283 citations

Long-term mobile phone use and brain tumor risk.

Lonn S, Ahlbom A, Hall P, Feychting M. · 2005

Swedish researchers studied whether long-term mobile phone use increases brain tumor risk by comparing 644 brain tumor patients with 674 healthy controls over a period when many people had used phones for more than 10 years. They found no increased risk of glioma or meningioma brain tumors, even among the heaviest users. The study actually showed slightly lower tumor rates among phone users, though this protective effect was likely due to study limitations rather than phones preventing cancer.

Brain & Nervous SystemNo Effects Found

Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats.

Kuribayashi M et al. · 2005

Researchers exposed young and developing rats to cell phone-frequency radiation (1439 MHz) for 90 minutes daily to see if it damaged the blood-brain barrier, which protects the brain from harmful substances. Even at high exposure levels (up to 6 W/kg), they found no changes in barrier function or protective proteins after 1-2 weeks of exposure. This suggests that this type of radiofrequency radiation may not compromise the brain's natural protective barrier in young animals.

Sleep & Circadian RhythmNo Effects Found

No effects of 900 MHz and 1800 MHz electromagnetic field emitted from cellular phone on nocturnal serum melatonin levels in rats.

Koyu A et al. · 2005

Researchers exposed rats to cell phone frequencies (900 MHz and 1800 MHz) for 30 minutes daily over four weeks and measured their nighttime melatonin levels. They found no significant differences in melatonin production between exposed and unexposed rats. This suggests that typical cell phone radiation may not disrupt the body's natural sleep hormone production, at least under these specific exposure conditions.

Brain & Nervous SystemNo Effects Found

Effects of prolonged wakefulness combined with alcohol and hands-free cell phone divided attention tasks on simulated driving.

Iudice A et al. · 2005

Researchers tested how hands-free cell phone use affects driving ability when combined with alcohol and sleep deprivation. They found that using a hands-free phone while driving actually helped counteract some of alcohol's impairment effects when drivers were well-rested. However, when drivers were severely sleep-deprived (24 hours awake), the combination of alcohol and phone use created the most dangerous driving conditions.

Brain & Nervous SystemNo Effects Found104 citations

Electromagnetic field emitted by 902 MHz mobile phones shows no effects on children's cognitive function.

Haarala C et al. · 2005

Researchers tested whether 902 MHz cell phone radiation affects children's thinking abilities by having 32 kids aged 10-14 take cognitive tests while exposed to both active and inactive phones. They found no differences in reaction time or accuracy between the two conditions. This challenges earlier studies suggesting cell phone radiation might actually improve cognitive performance.

Cellular EffectsNo Effects Found

An investigation of the effects of TETRA RF fields on intracellular calcium in neurones and cardiac myocytes.

Green AC et al. · 2005

Researchers exposed brain and heart cells to TETRA radio signals (the frequency used by emergency services) to see if it disrupted calcium levels inside the cells. Calcium is crucial for cell function, especially in neurons and heart muscle. The study found no significant changes in calcium activity at any exposure level tested, suggesting TETRA fields don't interfere with this fundamental cellular process.

Brain & Nervous SystemNo Effects Found

Electromagnetic Fields from mobile phones do not affect the inner auditory system of Sprague-Dawley Rats.

Galloni P et al. · 2005

Researchers exposed rats to cell phone radiation at 900 and 1800 MHz frequencies for 2 hours daily over 4 weeks to test if it damaged their inner ear function. Using sensitive hearing tests that measure the health of cochlear hair cells (the tiny structures that convert sound waves into nerve signals), they found no differences between exposed and unexposed animals. This suggests that typical cell phone radiation levels may not directly harm the delicate hearing mechanisms in the inner ear.

Brain & Nervous SystemNo Effects Found

Effects of 900 MHz electromagnetic fields exposure on cochlear cells' functionality in rats: Evaluation of distortion product otoacoustic emissions.

Galloni P et al. · 2005

Researchers exposed rats to 900 MHz electromagnetic fields (the same frequency used by many cell phones) and measured their hearing function using specialized tests that detect the health of inner ear cells. The study found no significant changes in hearing function during or after EMF exposure. This suggests that cell phone radiation at 900 MHz may not directly damage the delicate hair cells in the cochlea that are essential for hearing.

Learn More

For a comprehensive exploration of EMF health effects including brain & nervous system, along with practical protection strategies, explore these books by R Blank and Dr. Martin Blank.

FAQs: EMF & Brain & Nervous System

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
The BioInitiative Report database includes 1,644 peer-reviewed studies examining the relationship between electromagnetic field exposure and brain & nervous system. These studies have been conducted by researchers worldwide and published in scientific journals. The research spans multiple decades and includes various types of EMF sources including cell phones, WiFi, power lines, and other common sources of electromagnetic radiation.
78% of the 1,644 studies examining brain & nervous system found measurable biological effects from EMF exposure. This means that 1284 studies documented observable changes in biological systems when exposed to electromagnetic fields. The remaining 22% either found no significant effects or had inconclusive results, which is typical in scientific research where study design and exposure parameters vary.