3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Topics

Brain & Nervous System

5 min read
Share:
Key Finding: 78% of 1,644 studies on brain & nervous system found biological effects from EMF exposure.

Of 1,644 studies examining brain & nervous system, 78% found measurable biological effects from EMF exposure.

Lowest Documented Effect

Research found effects on brain & nervous system at exposures as low as:

Study Exposure Level in ContextA logarithmic scale showing exposure levels relative to Building Biology concern thresholds and regulatory limits.Study Exposure Level in Context0.0000000043Extreme Concern5 mGFCC Limit2,000 mGEffects observed in the No Concern range (Building Biology)FCC limit is 465,116,279,070x higher than this exposure level

Research Overview

  • -When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research.
  • -Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
  • -This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health. This isn't a handful of outlier studies or preliminary findings - this represents decades of research from laboratories worldwide showing remarkably consistent results.

Henry Lai's comprehensive analysis of peer-reviewed research, 91% of studies examining extremely low frequency fields found biological effects on the nervous system, while 72% of radiofrequency studies showed similar impacts.

The scientific evidence demonstrates that radiofrequency electromagnetic fields from mobile phones and wireless devices produce measurable effects on nervous system function and cellular processes in the brain.

Source: BioInitiative Working Group. BioInitiative Report: A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Radiation. Edited by Cindy Sage and David O. Carpenter, BioInitiative, 2012, updated 2020. www.bioinitiative.org

Research Statistics by EMF Type

EMF TypeStudiesShowing EffectsPercentage
ELF22920891.00%
RF30522272.00%

Source: Dr. Henry Lai research database, BioInitiative Report

Showing 1,644 studies

Changes of nitric oxide synthase in hippocampus and cerebellum of the rat following exposure to electromagnetic pulse.

Ding G, Xie X, Zhang L et al. · 1998

Researchers exposed rats to electromagnetic pulses and examined brain tissue to see how it affected nitric oxide synthase (NOS), an enzyme crucial for learning and memory. They found that EMF exposure significantly reduced NOS activity in the hippocampus (the brain's memory center) for up to 48 hours after exposure. This reduction in brain chemistry directly correlates with the learning and memory problems that EMF exposure causes in laboratory animals.

Resting blood pressure increase during exposure to a radio-frequency electromagnetic field.

Braune, S, Wrocklage, C, Raczek, J, Gailus, T, Lucking, CH · 1998

German researchers exposed 10 healthy volunteers to GSM 900 MHz cell phone radiation for 35 minutes while continuously monitoring their blood pressure and heart rate. They found that resting blood pressure increased during exposure to the phone's electromagnetic field compared to a placebo condition. This suggests that even short-term exposure to cell phone radiation can affect cardiovascular function in healthy individuals.

Thermal tolerance reduces hyperthermia-induced disruption of working memory: a role for endogenous opiates?

Mickley GA, Cobb BL · 1998

Researchers exposed rats to microwave radiation at levels that caused significant body heating and found it disrupted their ability to distinguish between familiar and new objects - a key indicator of working memory function. However, rats that had been previously exposed to the heating developed a tolerance that protected them from both the temperature increase and memory problems. The study suggests that microwave-induced heating can impair cognitive function, but the brain may adapt to protect itself from repeated exposures.

Extraordinary behavior disorders in cows in proximity to transmission stations.

Loscher W, Kas G, · 1998

German researchers studied dairy cows living near TV and cell phone transmission towers and found significant behavioral abnormalities over a two-year period. When they moved an affected cow 20 kilometers away from the antennas, its behavior completely normalized within five days, but the problems returned when the cow was brought back. The study suggests that radiofrequency electromagnetic fields from the transmission equipment were the likely cause of these behavioral changes.

[Forming of memory (imprinting) in chicks after prior low-level exposure to electromagnetic fields].

Grigor'ev IuG, Stepanov VS · 1998

Russian researchers exposed developing chick embryos to electromagnetic fields at power densities between 0.4 and 10 mW/cm2 and found these exposures could alter memory formation (imprinting) processes in the brain. The study showed that EMF exposure during embryonic development left lasting changes in brain function that persisted after hatching. This suggests electromagnetic fields can interfere with critical brain development processes during vulnerable developmental periods.

Interaction of low level modulated RF radiation with Na+¯K+-ATPase.

Behari J, Kunjilwar KK, and Pyne S · 1998

Researchers exposed developing rats to radiofrequency radiation similar to what cell phones emit and found it significantly increased activity of a critical brain enzyme called Na+-K+-ATPase by 15-20%. This enzyme is essential for nerve cell function and brain development. The findings suggest that RF radiation can alter fundamental brain chemistry in developing animals, raising concerns about potential effects on brain development in children.

Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail.

Kavaliers M, Choleris E, Prato FS, Ossenkopp K · 1998

Researchers exposed land snails to 60-Hz magnetic fields from power lines and found the fields disrupted the animals' natural pain relief systems by altering brain chemistry. This shows that common household electrical frequencies can interfere with basic biological processes controlling pain in living organisms.

Sleep & Circadian RhythmNo Effects Found

No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland.

Vollrath L, Spessert R, Kratzsch T, Keiner M, Hollmann H · 1997

German researchers exposed rats and hamsters to 900 MHz radio frequency fields (similar to early cell phones) for up to 6 hours to see if it would affect their pineal glands, which produce the sleep hormone melatonin. They found no changes in melatonin production or pineal gland structure at any exposure level tested. This suggests that short-term RF exposure at these levels doesn't disrupt the body's natural sleep-wake cycle regulation.

Cancer & TumorsNo Effects Found

Brain tumour development in rats exposed to electromagnetic fields used in wireless cellular communication.

Salford LG, Brun A, Persson BRR · 1997

Researchers injected brain tumor cells into 154 pairs of rats, then exposed half to 915 MHz microwaves (the frequency used by early cell phones) for 7 hours daily over 2-3 weeks while keeping the other half as controls. They found no difference in tumor growth between exposed and unexposed rats, suggesting that microwave exposure did not accelerate existing brain tumors in this particular experimental setup.

Brain & Nervous SystemNo Effects Found135 citations

No short-term effects of digital mobile radio telephone on the awake human electroencephalogram

Roschke, J, Mann, K · 1997

German researchers exposed 34 healthy men to cell phone radiation (900 MHz) for 3.5 minutes while measuring their brain activity with EEG sensors. They found no detectable changes in brain wave patterns during the short exposure period compared to when the phone was turned off. This suggests that brief cell phone use may not immediately alter brain electrical activity in awake, healthy adults.

Brain & Nervous SystemNo Effects Found

Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression.

Ivaschuk OI et al. · 1997

Researchers exposed rat nerve cells to cell phone radiation at 836.55 MHz (the frequency used by early digital cell phones) to see if it would affect the activity of genes called c-fos and c-jun, which help control cell growth and responses to stress. They found mostly no effects, except for a 38% decrease in c-jun gene activity at the highest exposure level of 9 mW/cm². This suggests that cell phone radiation may have subtle effects on nerve cell gene expression, but only at relatively high exposure levels.

Effects of acute exposure to ultrahigh radiofrequency radiation on three antenna engineers.

Schilling, CJ · 1997

Researchers documented what happened to three antenna engineers who were accidentally exposed to high-level radiofrequency radiation (785 MHz) while working on a television mast. The men immediately felt intense heating in exposed body parts, followed by headaches, numbness, nausea, diarrhea, and skin redness, with chronic headaches persisting in the most exposed areas of their heads. This case study provides direct evidence that RF radiation can cause immediate and lasting health effects in humans at high exposure levels.

Brain & Nervous System1,257 citations

Association between cellular-telephone calls and motor vehicle collisions.

Redelmeier DA, Tibshirani RJ · 1997

Researchers analyzed phone records from 699 drivers who had been in car accidents to see if cell phone use increased crash risk. They found that drivers were four times more likely to crash while using their phone compared to when they weren't, with hands-free devices offering no safety advantage over handheld phones. The study suggests that the mental distraction of phone conversations, not just physical handling, creates the danger.

Blood-brain barrier permeability in rats exposed to electromagnetic fields used in wireless communication.

Persson BRR, Salford LG, Brun A · 1997

Researchers exposed rats to 915 MHz microwave radiation (similar to cell phone frequencies) for periods ranging from 2 minutes to 16 hours and examined whether this damaged the blood-brain barrier, a critical protective shield that prevents toxins from entering brain tissue. They found that 39% of exposed rats showed abnormal leakage in their blood-brain barrier compared to only 17% of unexposed control rats. This suggests that wireless communication frequencies can compromise the brain's natural protective barrier, potentially allowing harmful substances to reach brain cells.

[Evaluation of selected functional circulation parameters of workers from various occupational groups exposed to electromagnetic fields of high frequency. III. 24-h monitoring of arterial blood pressure].

Gadzicka E, Bortkiewicz A, Zmyslony M, Palczynski C · 1997

Polish researchers monitored blood pressure and heart rate in 153 male workers exposed to radio frequency EMF at broadcast and radio service stations over periods ranging from 1 to 42 years. While overall blood pressure remained normal, workers showed significantly reduced heart rate variability, suggesting disrupted nervous system regulation of the heart. Radio service workers also had higher rates of elevated blood pressure compared to unexposed controls.

Reverse-micelle model: pH, electromagnetic field and inhibitor enzyme interaction.

Chattopadhyay SK, Toews KA, Butt S, Barlett R, Brown HD · 1997

Researchers studied how microwave electromagnetic fields affect enzyme activity using a laboratory model that better mimics conditions inside living cells than traditional test tube experiments. They found that low-intensity microwave fields disrupted the function of two important enzymes (acetylcholinesterase and cytochrome-P450 reductase) in both traditional solutions and the more realistic cellular-like environment. This suggests that EMF effects on enzymes observed in simple laboratory conditions may also occur in the complex environment of actual living cells.

Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells.

Lai, H, Singh, NP · 1997

Researchers exposed rats to microwave radiation similar to cell phone signals and found it caused DNA damage in brain cells. However, when they gave the rats melatonin or another antioxidant compound before and after exposure, the DNA damage was completely prevented. This suggests that radiofrequency radiation damages DNA through free radical formation, and that antioxidants may offer protection.

Electromagnetic millimeter waves increase the duration of anaesthesia caused by ketamine and chloral hydrate in mice.

Rojavin MA, Ziskin MC · 1997

Researchers exposed anesthetized mice to millimeter wave radiation at 61.22 GHz and found it extended the duration of anesthesia by approximately 50%. The effect was blocked when mice were pretreated with naloxone (an opioid blocker), suggesting the radiation triggers the release of the body's natural opioids. This demonstrates that millimeter wave exposure can directly alter brain chemistry and nervous system function.

Amino acid concentrations in hypothalamic and caudate nuclei during microwave-induced thermal stress: analysis by microdialysis.

Mason PA et al. · 1997

Researchers exposed rats to high-power 5.02 GHz microwave radiation, heating their brains to dangerous temperatures. This thermal stress significantly increased three amino acid concentrations in critical brain regions including the hypothalamus. The findings suggest microwave heating disrupts normal brain chemistry beyond temperature-control areas.

Naltrexone blocks RFR-induced DNA double strand breaks in rat brain cells.

Lai, H, Carino, MA, Singh, NP · 1997

Researchers exposed rats to microwave radiation at 2450 MHz (similar to WiFi frequencies) for 2 hours and found significant DNA damage in brain cells. When they gave the rats naltrexone, a drug that blocks the body's natural opioids, the DNA damage was partially prevented. This suggests that microwave radiation triggers the release of natural opioids in the brain, which then contributes to genetic damage.

Behavioral teratologic studies using microwave radiation: is there an increased risk from exposure to cellular phones and microwave ovens?

Jensh RP · 1997

Pregnant rats exposed to microwave radiation at cell phone and microwave oven frequencies showed concerning effects in offspring. The highest frequency (6000 MHz) caused delayed development, reduced birth weight, and altered brain function, suggesting certain microwave frequencies may affect developing brains.

Learn More

For a comprehensive exploration of EMF health effects including brain & nervous system, along with practical protection strategies, explore these books by R Blank and Dr. Martin Blank.

FAQs: EMF & Brain & Nervous System

When 81.3% of studies examining EMF effects on the brain and nervous system report biological changes, we're looking at one of the most consistent patterns in EMF research. Out of 1,344 peer-reviewed studies, 1,092 have documented measurable impacts on neural function, brain activity, and nervous system health.
The BioInitiative Report database includes 1,644 peer-reviewed studies examining the relationship between electromagnetic field exposure and brain & nervous system. These studies have been conducted by researchers worldwide and published in scientific journals. The research spans multiple decades and includes various types of EMF sources including cell phones, WiFi, power lines, and other common sources of electromagnetic radiation.
78% of the 1,644 studies examining brain & nervous system found measurable biological effects from EMF exposure. This means that 1284 studies documented observable changes in biological systems when exposed to electromagnetic fields. The remaining 22% either found no significant effects or had inconclusive results, which is typical in scientific research where study design and exposure parameters vary.