Strasák L, Bártová E, Krejci J, Fojt L, Vetterl V. · 2009
Researchers exposed laboratory mice to extremely low frequency magnetic fields (50 Hz at 2 milliTesla) for four days and measured changes in brain proteins. They found that exposure decreased levels of c-Jun, a protein involved in cellular stress responses and gene regulation, while another protein (c-Fos) remained unchanged. This suggests that even short-term exposure to magnetic fields can alter brain biochemistry at the cellular level.
Aldinucci C et al. · 2009
Italian researchers exposed rat brain nerve terminals (synaptosomes) to 50 Hz magnetic fields at 2 milliTesla for 2 hours to study effects on basic cellular functions. They found no changes in energy production, calcium levels, membrane function, or oxidative stress markers. This suggests that power-frequency magnetic fields at this intensity don't disrupt fundamental brain cell processes.
Liu T, Wang S, He L, Ye K. · 2008
Researchers exposed rats to extremely low frequency magnetic fields (similar to power lines) for 4 weeks and found the animals performed better on memory tests. The exposed rats learned spatial tasks faster and retained memories longer than unexposed rats. This unexpected finding suggests that certain EMF exposures might enhance rather than impair brain function under specific conditions.
Liu T, Wang S, He L, Ye K. · 2008
Researchers exposed rats to power line frequency magnetic fields (50 Hz) for 25 days. Rats exposed 4 hours daily showed increased anxiety behaviors in tests, while 1-hour exposure had no effect, suggesting longer daily exposure to these fields may increase anxiety levels.
Jadidi M et al. · 2007
Researchers exposed rats to 50 Hz magnetic fields (household electricity frequency) immediately after learning a maze. An 8 milliTesla field for 20 minutes disrupted memory formation when applied right after learning, suggesting magnetic fields can interfere with how brains consolidate new memories.
Jadidi M et al. · 2007
Researchers exposed rats to 50 Hz magnetic fields (power line frequency) for 20 minutes after they learned a memory task. High-intensity exposure (8 milliTesla) impaired their ability to remember the task 48 hours later, suggesting magnetic fields can disrupt how the brain stores new memories.
Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdzić D. · 2007
Researchers exposed endangered longhorn beetles to weak magnetic fields (2 milliTesla) for five minutes and monitored their brain nerve activity. The magnetic field caused permanent changes to nerve cell activity in 7 out of 8 beetles tested, with some neurons becoming more active and others less active. This demonstrates that even brief exposure to relatively weak magnetic fields can cause lasting changes to nervous system function in living organisms.
Nikolova T et al. · 2005
Researchers exposed developing mouse brain cells to power line fields and cell phone radiation for up to 48 hours. Both EMF types altered genes controlling cell death and DNA repair, suggesting cells experienced stress even though they appeared to function normally afterward.
De Mattei M et al. · 2003
Researchers exposed bovine cartilage samples to 75 Hz magnetic fields at 2.3 mT and found the fields actually promoted cartilage health by increasing protective protein production. The magnetic fields helped cartilage maintain its structure even when exposed to inflammatory substances that normally cause cartilage breakdown. This suggests certain electromagnetic frequencies might have therapeutic potential for joint health.
Calabrò E et al. · 2013
Italian researchers exposed human brain cells to a static magnetic field at 2.2 millitesla (below current safety limits) for 24 hours and found significant cellular damage. The magnetic field reduced the cells' energy production by 30%, increased harmful reactive oxygen species, and altered the structure of cellular proteins and fats. This demonstrates that even magnetic fields considered 'safe' by regulatory standards can disrupt normal brain cell function.
Chu LY et al. · 2011
Researchers exposed mice to 60 Hz magnetic fields (the same frequency used in power lines and household electricity) for 3 hours and found significant oxidative stress in the brain's cerebellum. The magnetic field exposure increased harmful molecules that damage cells while decreasing protective antioxidants like vitamin C. This suggests that even short-term exposure to power-frequency magnetic fields can disrupt the brain's natural defense systems against cellular damage.
Chu LY et al. · 2011
Researchers exposed mouse brain tissue to 60 Hz magnetic fields from power lines for three hours and found significant oxidative stress in the cerebellum, including harmful free radicals and depleted vitamin C, suggesting these common electrical frequencies may damage brain cells.
Chu LY et al. · 2011
Researchers exposed mice to 60 Hz magnetic fields (the same frequency as household electricity) for 3 hours and found significant oxidative stress in the cerebellum, the brain region controlling movement and coordination. The magnetic field exposure increased harmful molecules called free radicals while depleting protective antioxidants like vitamin C. This suggests that magnetic fields from power lines and electrical devices may damage brain cells through oxidative stress.
Martínez-Sámano J et al. · 2010
Researchers exposed rats to strong 60 Hz magnetic fields for two hours and found decreased antioxidants in their hearts and blood. These antioxidants normally protect cells from damage, suggesting that even brief exposure to powerful magnetic fields can weaken the body's natural cellular defenses.
Shin EJ et al. · 2007
Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) for one hour daily and found it significantly increased their movement and activity levels. The magnetic field exposure activated specific dopamine receptors in the brain (D1-like receptors), which are involved in movement control and reward pathways. This suggests that ELF magnetic fields can directly alter brain chemistry and behavior through changes in the dopamine system.
Solek P et al. · 2017
Polish researchers exposed mouse sperm cells to electromagnetic fields at 2, 50, and 120 Hz frequencies for two hours. The exposure triggered cell death by damaging DNA and causing oxidative stress, potentially reducing healthy sperm and contributing to male fertility problems.
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P · 2018
Researchers exposed tiny worms (C. elegans) to 50-Hz magnetic fields at 3 milliTesla from egg to larval stage and found significant disruptions in cellular energy production and inflammation pathways. The magnetic field exposure caused oxidative stress (cellular damage from free radicals), impaired the worms' energy-producing machinery, and increased inflammatory compounds. This matters because it demonstrates that power-frequency magnetic fields can disrupt fundamental biological processes at the cellular level.
Hernádi L, László JF. · 2014
Researchers exposed snails to a static magnetic field for 30 minutes and tested their pain response using a hot plate test. The magnetic field exposure significantly altered the snails' response time to heat by up to 47%, affecting brain chemicals involved in pain perception including serotonin and opioid systems. This demonstrates that magnetic fields can directly influence nervous system function and pain processing in living organisms.
Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. · 2013
Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) at 3 milliTesla for 200 hours and measured their behavior and stress hormone levels. The exposed mice showed significantly more depression and anxiety-like behaviors, along with elevated levels of the stress hormone corticosterone. This suggests that chronic exposure to strong magnetic fields may affect mental health and stress response systems.
Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. · 2013
Researchers exposed mice to extremely low-frequency magnetic fields (ELF-MF) at 3 milliTesla for 200 hours to study effects on mood and stress hormones. The exposed mice showed depression-like behaviors, increased anxiety, and elevated levels of corticosterone (a stress hormone), suggesting that chronic magnetic field exposure may affect mental health and stress response systems.
Corbacio M et al. · 2011
Scientists tested 99 people performing memory tasks while exposed to strong 60 Hz magnetic fields. The magnetic field exposure blocked the normal learning improvement that occurs with practice on cognitive tests, suggesting these industrial-strength fields may interfere with the brain's ability to form new memories.
Corbacio M et al. · 2011
Researchers exposed 99 people to a strong 60 Hz magnetic field (3 mT) for 30 minutes while they performed memory and thinking tests. While the magnetic field didn't clearly impair cognitive performance overall, it did prevent the normal learning improvement that occurs when people repeat the same memory test. This suggests that power-line frequency magnetic fields may interfere with the brain's ability to form new memories through practice.
Tayefi H et al. · 2010
Researchers exposed pregnant rats and their newborn pups to magnetic fields (3 mT) for 4 hours daily and examined the heart muscle tissue. They found significant damage including increased cell death, oxidative stress, and structural abnormalities in the heart muscle cells of exposed animals compared to unexposed controls. This suggests that electromagnetic field exposure during pregnancy and early development may harm heart tissue development.
Del Giudice E et al. · 2007
Italian researchers exposed human brain cells to 50 Hz electromagnetic fields from power lines and found significantly increased production of beta-amyloid proteins, the toxic clumps linked to Alzheimer's disease. This laboratory finding suggests a potential biological mechanism connecting household electricity exposure to Alzheimer's risk.
Del Giudice E et al. · 2007
Researchers exposed human brain cells to 50 Hz magnetic fields from power lines and found they produced more amyloid-beta, the toxic proteins that build up in Alzheimer's disease. This laboratory study suggests electromagnetic field exposure might contribute to brain changes associated with Alzheimer's.