3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Cell Phone Radiation Research

RF Radiation

Research on electromagnetic radiation from mobile phones, including 2G, 3G, 4G LTE, and 5G NR signals.

1,326
Studies
73%
Showed Bioeffects
1
EMF Type
700 MHz - 2.7 GHz
Frequency

Related Studies (1,326)

Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system.

Cao Y, Xu Q, Jin ZD, Zhang J, Lu MX, Nie JH, Tong J. · 2010

Researchers exposed mice to 900-MHz microwave radiation (the same frequency used by many cell phones) before exposing them to gamma radiation to see how it affected their blood-forming system. They found that the microwave exposure actually protected the mice from radiation damage, with less severe harm to bone marrow and spleen tissues. The protective effect appeared to work by boosting growth factors and helping blood-forming cells survive the gamma radiation.

Comparison of radiofrequency exposure of a mouse dam and foetuses at 900 MHz.

McIntosh RL et al. · 2010

Australian researchers developed detailed computer models to study how 900 MHz radiofrequency radiation (used in older cell phones) affects pregnant mice and their developing fetuses. They found that while both mother and fetuses absorbed the radiation, the fetuses experienced 14% lower energy absorption and 45% less temperature increase than their mothers. This research provides crucial data for understanding how RF exposure during pregnancy might affect developing offspring differently than adults.

Brain & Nervous SystemNo Effects Found

Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields.

Finnie JW, Cai Z, Manavis J, Helps S, Blumbergs PC. · 2010

Researchers exposed mice to cell phone radiation at 900 MHz for either one hour or repeatedly over two years, then examined their brains for signs of microglial activation (immune cells that respond to brain stress or damage). They found no evidence that either short-term or long-term radiofrequency exposure activated these immune cells, even though the same cells responded strongly when brain tissue was physically damaged. This suggests that cell phone radiation at these levels may not trigger the brain's stress response mechanisms.

The influence of the reflective environment on the absorption of a human male exposed to representative base station antennas from 300 MHz to 5 GHz.

Vermeeren G et al. · 2010

Researchers used computer modeling to study how reflective surfaces like walls and ground affect radiation absorption in the human body when exposed to cell tower antennas at various frequencies. They found that reflective environments can dramatically change radiation absorption levels - sometimes reducing it by 87% and other times increasing it by 630% compared to open space exposure. This reveals that current safety guidelines, which don't account for reflective environments, may not adequately protect people in real-world settings with buildings and metal surfaces.

Cellular EffectsNo Effects Found

Two-dimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells.

Kim KB et al. · 2010

Researchers exposed breast cancer cells (MCF7) to cell phone radiation at 849 MHz for one hour daily over three days, then analyzed whether the radiation changed protein production in the cells. They found no significant or consistent changes in protein expression at either exposure level tested (2 or 10 W/kg SAR). This suggests that radiofrequency radiation at these levels does not alter how cells make proteins, which is important because protein changes can indicate cellular stress or damage.

Effects of GSM signals during exposure to event related potentials (ERPs)

Bak M, Dudarewicz A, Zmyślony M, Sliwinska-Kowalska M · 2010

Researchers exposed 15 volunteers to GSM cell phone radiation for 20 minutes while measuring their brain activity using a test called event-related potentials (ERPs), which tracks how the brain processes information. They found that during EMF exposure, the brain's P300 wave amplitude decreased significantly, but returned to normal levels immediately after exposure ended. This suggests that cell phone radiation can temporarily alter brain function in real-time.

Exposure to wireless phone emissions and serum β-trace protein

Hardell L, Söderqvist F, Carlberg M, Zetterberg H, Mild KH · 2010

Researchers measured β-trace protein (a brain-produced protein that helps regulate sleep) in 62 young adults and found that people who used wireless phones longer had lower levels of this protein in their blood. When participants were exposed to cell phone radiation for 30 minutes in a lab setting, their β-trace protein didn't change significantly, but unexposed participants showed increased levels over the same time period.

Exposure to wireless phone emissions and serum beta-trace protein.

Hardell L, Söderqvist F, Carlberg M, Zetterberg H, Mild KH. · 2010

Researchers measured beta-trace protein, a key enzyme that produces the brain's natural sleep hormone, in 62 young adults who used wireless phones. They found that people who had used wireless phones longer had lower levels of this sleep-promoting protein in their blood. This provides a potential biological explanation for why some people experience sleep problems when exposed to cell phone radiation.

DNA & Genetic DamageNo Effects Found

Is there any possible genotoxic effect in exfoliated bladder cells of rat under the exposure of 1800 MHz GSM-like modulated radio frequency radiation (RFR)?

Gurbuz N, Sirav B, Yuvaci HU, Turhan N, Coskun ZK, Seyhan N. · 2010

Turkish researchers exposed rats to 1800 MHz cell phone radiation (the same frequency used by GSM networks) for 20 minutes daily over a month to test for DNA damage in bladder cells. They found no increase in micronuclei (cellular markers of genetic damage) compared to unexposed control rats. This suggests that short-term exposure to GSM radiation at these levels did not cause detectable genetic damage to bladder cells.

Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz.

Kawai H, Nagaoka T, Watanabe S, Saito K, Takahashi M, Ito K. · 2010

Scientists used computer models to study how much electromagnetic radiation developing embryos absorb from radio frequencies. They found embryos absorbed up to 0.08 watts per kilogram when exposed to current safety guideline levels, helping researchers understand potential effects from everyday wireless devices.

[Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 4. Manifestation of oxidative intracellular stress-reaction after long-term non-thermal EMF exposure of rats]

Grigor'ev IuG et al. · 2010

Researchers exposed rats to WiFi-frequency radiation (2450 MHz) for 7 hours daily over 30 days at non-heating levels. They found clear signs of oxidative stress in blood, indicating cellular damage from harmful free radicals. This suggests low-level microwave exposure can damage cells without heating tissue.

Effects of exposure to a mobile phone on sexual behavior in adult male rabbit: an observational study.

Salama N, Kishimoto T, Kanayama HO, Kagawa S · 2010

Researchers exposed male rabbits to mobile phone radiation (800 MHz) for 8 hours daily over 12 weeks and found significant changes in sexual behavior, including reduced ejaculation frequency and increased mounting without ejaculation. The study was later retracted by the journal, which means the findings were deemed unreliable due to methodological or other serious concerns.

Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

Campisi A et al. · 2010

Italian scientists exposed brain cells to cell phone radiation and found that pulsed signals caused DNA damage and increased harmful molecules called free radicals after 20 minutes. Continuous waves showed no effects, suggesting modulated wireless signals may harm brain cells through non-heating mechanisms.

The effect of radiofrequency radiation on DNA and lipid damage in non-pregnant and pregnant rabbits and their newborns.

Guler G, Tomruk A, Ozgur E, Seyhan N. · 2010

Researchers exposed pregnant and non-pregnant rabbits to cell phone radiation for 15 minutes daily over seven days. Both groups showed significant DNA damage and cellular stress in brain tissue, while newborns were unaffected. This demonstrates measurable biological harm from everyday cell phone exposure levels.

Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

Xu S et al. · 2010

Researchers exposed brain neurons to cell phone radiation at 1800 MHz and found it damaged mitochondrial DNA, the genetic material in cells' energy centers. The radiation increased DNA damage markers and reduced healthy mitochondrial genes. This suggests cell phone radiation may harm brain cells' power-producing structures.

Radiofrequency fields, transthyretin, and Alzheimer's disease

Söderqvist F, Hardell L, Carlberg M, Mild KH · 2010

Researchers exposed 41 people to cell phone radiation for 30 minutes and found it increased levels of transthyretin (TTR), a protein that helps protect the brain from Alzheimer's disease by clearing harmful plaques. In a separate study of 313 people, longer-term phone use was also linked to higher TTR levels. This suggests cell phone radiation might actually trigger a protective response in the brain against Alzheimer's disease.

Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain.

Maskey D et al. · 2010

Researchers exposed mice to cell phone frequency radiation (835 MHz) for up to one month and examined brain tissue in the hippocampus, a region critical for memory and learning. They found significant damage to calcium-binding proteins and near-complete loss of pyramidal brain cells in the CA1 area after one month of exposure. This cellular damage could disrupt normal brain functions including memory formation and neural connectivity.

Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field

Sonmez OF, Odaci E, Bas O, Kaplan S · 2010

Researchers exposed adult female rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over 28 days. They found that exposed rats had significantly fewer Purkinje cells in their cerebellum compared to unexposed rats. Purkinje cells are critical brain neurons that control movement, balance, and coordination, making their loss potentially serious for neurological function.

Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons

Xu S et al. · 2010

Researchers exposed brain neurons to cell phone-frequency radiation (1800 MHz) at levels similar to heavy phone use and found it damaged the DNA inside cellular powerhouses called mitochondria. The radiation increased markers of DNA damage by 24 hours and reduced the neurons' ability to produce energy. Importantly, the antioxidant melatonin completely prevented this damage, suggesting oxidative stress was the underlying cause.

FAQs: Cell Phones EMF Research

Of 1,326 peer-reviewed studies examining cell phones electromagnetic radiation, 73% found measurable biological effects. These studies span decades of research conducted by scientists worldwide and include both laboratory experiments and epidemiological studies examining the health effects of cell phones radiation exposure.
The BioInitiative Report database includes 1,326 peer-reviewed studies specifically examining cell phones electromagnetic radiation and its potential health effects. These studies have been conducted by researchers worldwide and published in scientific journals. The research examines various biological endpoints including cellular effects, neurological impacts, reproductive health, and other health outcomes.
73% of the 1,326 studies examining cell phones electromagnetic radiation found measurable biological effects. This means that 968 studies documented observable changes when organisms were exposed to cell phones EMF. The remaining studies either found no significant effects or had inconclusive results.