3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Kitchen EMF Research

RFELF Magnetic

Research on EMF from kitchen appliances - microwave ovens, refrigerators, and other appliances.

2
Sources
670
Studies
2
EMF Types

Related Studies (670)

Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons.

Zheng Y, Dou JR, Gao Y, Dong L, Li G. · 2017

Researchers exposed brain neurons from mice to a 15 Hz magnetic field (the type found around power lines) and measured how it affected the channels that allow electrical signals to flow through nerve cells. The magnetic field disrupted these crucial channels, reducing their activity and changing how they function. This suggests that everyday magnetic field exposure could interfere with normal brain cell communication.

Radiofrequency radiations induced genotoxic and carcinogenic effects on chickpea (Cicer arietinum L.) root tip cells.

Qureshi ST, Memon SA, Abassi AR, Sial MA, Bughio FA. · 2017

Pakistani researchers exposed chickpea seeds to radiation from cell phones (900 MHz) and laptops (3.31 GHz) for 24 and 48 hours to study DNA damage. They found that both devices caused genetic damage to plant cells, with laptop radiation being more harmful than cell phone radiation. The study suggests these everyday devices could potentially cause DNA damage and cancer-like changes in living tissue.

Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.

Davarpanah Jazi S, Modolo J, Baker C, Villard S, Legros A. · 2017

Researchers exposed 10 healthy volunteers to 60 Hz magnetic fields up to 50 milliTesla (extremely high levels) while measuring brain activity and hand tremor. They found subtle changes in brain wave patterns related to touch sensation, but no effects on motor control or hand tremor. The study provides preliminary evidence that power-frequency magnetic fields can influence specific brain regions even when they don't cause obvious physical symptoms.

Effect of extremely low frequency electromagnetic field on brain histopathology of Caspian Sea Cyprinus carpio.

Samiee F, Samiee K. · 2017

Researchers exposed Caspian Sea carp to extremely low frequency electromagnetic fields (the same 50 Hz frequency used in power lines and household electricity) for 30 minutes to 1 hour. Fish exposed to magnetic field strengths of 3 milliTesla or higher showed severe brain damage, including tissue death. The damage worsened with both stronger fields and longer exposure times.

Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation

Cichoń N et al. · 2017

Researchers studied whether extremely low-frequency electromagnetic fields could help stroke patients recover by examining brain chemistry changes. They exposed 48 stroke patients to 40 Hz magnetic fields for 15 minutes daily during rehabilitation and found increased levels of nitric oxide (a brain chemical involved in healing) plus improved mental and daily functioning. This suggests that specific EMF exposures might actually support brain recovery after stroke.

Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms.

Falone S et al. · 2017

Researchers exposed human neuroblastoma cells (a type of brain cancer cell) to 50 Hz magnetic fields at levels similar to those found near power lines. The magnetic field exposure made the cancer cells grow faster and become more resistant to cancer treatment drugs by activating the cells' natural defense systems. This suggests that power-frequency magnetic fields might make certain brain cancers more aggressive and harder to treat.

Assessing the combined effect of extremely low-frequency magnetic field exposure and oxidative stress on LINE-1 promoter methylation in human neural cells.

Giorgi G et al. · 2017

Researchers exposed human brain cells to power line magnetic fields alone and with cellular stress. While magnetic fields alone caused minor DNA changes, combining them with stress significantly altered DNA patterns that control genes. Most changes reversed, showing cells can recover.

Direction-dependent effects of combined static and ELF magnetic fields on cell proliferation and superoxide radical production.

Naarala J et al. · 2017

Scientists exposed human blood vessel cells and rat brain cells to combinations of Earth's magnetic field and power line magnetic fields. They found that horizontal power line fields caused different cellular effects than vertical ones. This suggests power line magnetic fields may interact with Earth's natural field to influence cell behavior.

Effect of 50-Hz sinusoidal magnetic field on the production of superoxide anion and the expression of heat-shock protein 70 in RAW264 cells

Pooam M, Nakayama M, Nishigaki C, Miyata H · 2017

Scientists exposed immune cells to 50 Hz magnetic fields from power lines at levels found near electrical devices. The magnetic fields damaged cellular energy centers, increased harmful free radicals, and triggered stress responses. This suggests everyday magnetic field exposure may stress our immune systems.

Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility.

Solek P et al. · 2017

Polish researchers exposed mouse sperm cells to electromagnetic fields at 2, 50, and 120 Hz frequencies for two hours. The exposure triggered cell death by damaging DNA and causing oxidative stress, potentially reducing healthy sperm and contributing to male fertility problems.

Effects of single and repeated exposure to a 50-Hz 2-mT electromagnetic field on primary cultured hippocampal neurons

Zeng Y, Shen Y, Hong L, Chen Y, Shi X, Zeng Q, Yu P · 2017

Researchers exposed brain cells from the hippocampus (a memory center) to 50-Hz magnetic fields at 2 milliTesla for 8 hours daily and measured various biological effects. They found that repeated exposure reduced cell survival and increased harmful reactive oxygen species, but did not cause DNA damage or cell death. The study suggests that while these magnetic fields create cellular stress, they may not cause severe biological damage.

Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation.

Cichoń N et al. · 2017

Researchers studied 48 stroke patients undergoing rehabilitation, with half receiving additional exposure to extremely low-frequency electromagnetic fields (40 Hz) for 15 minutes daily. The EMF-exposed group showed increased levels of nitric oxide compounds in their blood and demonstrated better functional and mental recovery compared to the control group. This suggests that specific EMF frequencies might help enhance brain healing after stroke.

Effects of Single and Repeated Exposure to a 50-Hz 2-mT Electromagnetic Field on Primary Cultured Hippocampal Neurons.

Zeng Y, Shen Y , Hong L, Chen Y, Shi X, Zeng Q, Yu P. · 2017

Researchers exposed brain cells important for memory to power-line frequency magnetic fields for eight hours daily. The exposure reduced cell health and increased cellular damage from free radicals, suggesting household electrical fields may stress brain cells without causing severe damage.

Effects of prenatal exposure to WIFI signal (2.45GHz) on postnatal development and behavior in rat: Influence of maternal restraint.

Othman H, Ammari M, Sakly M, Abdelmelek H. · 2017

Researchers exposed pregnant rats to WiFi signals (2.45 GHz) for 2 hours daily throughout pregnancy and studied the offspring's development and behavior. They found that prenatal WiFi exposure caused developmental delays, anxiety-like behavior, motor problems, and brain oxidative stress in the offspring, with male rats showing more severe effects. The study suggests that WiFi exposure during pregnancy may harm brain development and behavior in offspring.

Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2 − and H2O2

Ehnert S et al. · 2017

German researchers exposed human bone cells to extremely low frequency electromagnetic fields (16 Hz) for 7 minutes daily over 5 days to study cellular responses. They found that single exposures triggered oxidative stress, but repeated exposures actually strengthened the cells' antioxidant defenses and improved bone formation. The study suggests these electromagnetic fields might help bone healing by training cells to better handle oxidative damage.

Frequency-specific effects of repetitive magnetic stimulation on primary astrocyte cultures.

Clarke D et al. · 2017

Researchers exposed brain support cells called astrocytes to repetitive magnetic stimulation at different frequencies to see how they responded. They found that 1 Hz magnetic pulses caused a significant increase in calcium levels inside these cells, which is a sign of cellular activation. This suggests that magnetic fields can directly influence brain cells beyond just neurons, potentially explaining some of the biological effects seen with magnetic field exposure.

DNA & Genetic DamageNo Effects Found

No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines

Villarini M et al. · 2017

Italian researchers exposed brain cancer cells (neuroblastoma) to 50 Hz magnetic fields and aluminum compounds, both separately and together, to see if they would cause DNA damage. After exposing the cells to magnetic field levels ranging from 0.01 to 1 mT for up to 5 hours, they found no DNA damage, no changes in cellular stress markers, or any harmful synergistic effects when the exposures were combined. This suggests that short-term exposure to these power-frequency magnetic fields, even in combination with aluminum, does not appear to damage DNA in these particular brain cell types.

Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson's Disease toxin MPP.

Benassi B et al. · 2016

Italian researchers exposed brain cells to 50 Hz magnetic fields, then tested their response to a Parkinson's toxin. While EMF alone didn't harm cells, it weakened their antioxidant defenses, making them far more vulnerable to the toxin's damage, suggesting EMF might increase susceptibility to Parkinson's disease.

Brain & Nervous SystemNo Effects Found

Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys?

Calvente I et al. · 2016

Spanish researchers measured radiofrequency electromagnetic field exposure around the homes of 123 ten-year-old boys and tested their cognitive abilities and behavior. Boys living in areas with higher RF exposure (though still below safety guidelines) showed some concerning patterns including lower verbal skills and higher rates of anxiety-related problems. While the study found mostly no effects, the few significant associations raise questions about environmental RF exposure during critical brain development years.

Brain & Nervous SystemNo Effects Found

Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys?

Calvente I et al. · 2016

Spanish researchers measured radiofrequency radiation around the homes of 123 ten-year-old boys and tested their cognitive abilities and behavior. While most measures showed no effects, boys living in areas with higher RF exposure (though still below safety guidelines) had lower verbal skills and higher rates of anxiety-related behaviors compared to those in lower exposure areas. The researchers cautioned that study limitations prevent drawing definitive conclusions.

Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells.

Falone S et al. · 2016

Researchers exposed drug-resistant brain cancer cells to pulsed electromagnetic fields (PEMF) at 75 Hz for brief periods over five days, then tested how well the cells handled oxidative stress. The PEMF treatment boosted the cells' antioxidant defenses and reduced harmful reactive oxygen species when challenged with hydrogen peroxide. This suggests that specific electromagnetic field exposures might actually help protect cells from oxidative damage rather than harm them.

Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca2+ and ROS.

Duong CN, Kim JY · 2016

Researchers exposed human brain immune cells to magnetic fields at 50 Hz while depriving them of oxygen to mimic stroke conditions. The magnetic field exposure protected cells from dying by reducing harmful calcium and oxidative stress, suggesting potential therapeutic applications for stroke treatment.

Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields.

Kesari KK, Juutilainen J, Luukkonen J, Naarala J. · 2016

Researchers exposed brain cells to extremely low frequency magnetic fields (the type from power lines) at levels as low as 10 microtesla for 24 hours. The study found significant DNA damage in human neuroblastoma cells and increased oxidative stress in rat brain cells. These effects occurred at magnetic field levels that are commonly encountered near electrical appliances and power infrastructure.

FAQs: EMF in Kitchen

The kitchen environment contains several common sources of electromagnetic field exposure including microwave ovens, appliances. Together, these 2 sources account for 670 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 670 peer-reviewed studies in our database examining EMF sources commonly found in kitchen environments. These studies cover 2 different EMF sources: Microwave Ovens (259 studies), Appliances (411 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Appliances has the most research with 411 studies, followed by Microwave Ovens (259). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in kitchen settings.