Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. · 2018
Researchers exposed rats to 50 Hz magnetic fields for 60 days and found significant changes in brain molecules that control gene expression. Young female rats showed the most dramatic effects, with altered patterns in both brain tissue and blood, suggesting chronic EMF exposure may disrupt normal brain function.
Hong I et al. · 2018
Researchers exposed rat brain cells to weak magnetic fields at 1 Hz and 10 Hz frequencies, finding both altered cellular energy processes, with 1 Hz having stronger effects. This demonstrates that magnetic fields can change how brain cells function biochemically, providing insights into magnetic stimulation's neural effects.
Kazemi M et al. · 2018
Researchers exposed four male rhesus monkeys to 12 Hz magnetic fields for four hours daily over 30 days. The monkeys showed significantly improved visual working memory and increased brain chemicals linked to learning. This suggests certain EMF frequencies might enhance cognitive function.
Laszlo AM et al. · 2018
Researchers exposed turkeys to 50 Hz magnetic fields (the type from power lines) for three weeks and found it disrupted their stress response system by reducing a key cellular signaling pathway called beta-adrenoceptor function. The birds' systems returned to normal after five weeks without exposure, suggesting the effects were reversible. This matters because it shows even relatively low-level magnetic field exposure can alter fundamental biological processes in living animals.
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018
Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.
Esmaeilpour K et al. · 2018
Researchers studied whether low-frequency electrical stimulation (1 Hz) could help reverse memory problems caused by seizures in rats. They found that applying brief electrical stimulation treatments after seizures not only restored learning and memory abilities but also protected brain cells from seizure-related damage. This suggests that controlled electrical stimulation might offer a therapeutic approach for treating cognitive problems in epilepsy patients.
Jeong YJ et al. · 2018
Researchers exposed middle-aged mice to cell phone-level radiofrequency radiation (1950 MHz) for 8 months to see if it worsened age-related brain damage. While the aging mice showed expected increases in brain oxidative stress, DNA damage, and inflammation markers, the RF exposure didn't make any of these problems worse. The study suggests that long-term exposure to this type of radiation may not accelerate brain aging processes.
Chauhan P, Verma HN, Sisodia R, Kesari KK. · 2017
Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used in WiFi and microwave ovens) for 2 hours daily over 35 days at very low power levels. The exposed rats showed significant tissue damage and oxidative stress in their brain, liver, kidney, testis, and spleen compared to unexposed control rats. This suggests that even low-level microwave radiation exposure over time may cause cellular damage throughout the body.
Roser K et al. · 2017
Swiss researchers tracked electromagnetic field exposure in 90 teenagers for three days. They discovered that teens' own mobile phones generated 67% of their total EMF exposure, while cell towers contributed only 20%. This shows personal device usage, not environmental sources, drives adolescent EMF exposure levels.
Cichoń N, Bijak M, Miller E, Saluk J. · 2017
Researchers studied 57 stroke patients who received either standard rehabilitation alone or rehabilitation plus daily exposure to extremely low frequency magnetic fields (40 Hz) for four weeks. Patients exposed to the magnetic fields showed improved antioxidant enzyme activity in their blood and better functional recovery, including enhanced daily living skills and reduced depression scores compared to the control group.
Calcabrini C et al. · 2017
Researchers exposed human skin cells to 50 Hz electromagnetic fields for one hour. The fields caused temporary oxidative stress (cellular damage from harmful molecules) at moderate strengths, but cells recovered completely within 24 hours, suggesting no lasting harm occurs.
Varghese R, Majumdar A, Kumar G, Shukla A. · 2017
Researchers exposed female rats to WiFi-frequency radiation (2.45GHz) for 4 hours daily over 45 days and found significant brain changes including memory problems, increased anxiety, and markers of brain cell death. The radiation also damaged the brain's natural antioxidant defenses and altered the structure of neurons that carry electrical signals. This study suggests that prolonged exposure to WiFi radiation at the frequency used by most wireless devices may harm brain function and structure.
Taheri M et al. · 2017
Researchers exposed two types of bacteria (Listeria and E. coli) to radiofrequency radiation from cell phones (900 MHz) and Wi-Fi routers (2.4 GHz) to see if it affected how well antibiotics worked against them. They found that RF exposure made these disease-causing bacteria more resistant to antibiotics, meaning the medications became less effective at killing them. This could have serious implications for treating infections, as it suggests our wireless devices might be contributing to the growing problem of antibiotic-resistant bacteria.
Othman H et al. · 2017
Researchers exposed pregnant rats to WiFi signals (2.45GHz) for 2 hours daily throughout pregnancy and tracked their offspring's brain development. The study found that prenatal WiFi exposure delayed early neurodevelopment in the first 17 days after birth and caused oxidative stress (cellular damage from harmful molecules) in the brain at 28 days old. This suggests that WiFi exposure during pregnancy may affect early brain development in offspring.
Halgamuge MN. · 2017
Researchers analyzed 45 studies examining how radiofrequency radiation from mobile phones affects plants, looking at 169 experiments across 29 plant species. They found that nearly 90% of studies showed biological effects in plants exposed to cell phone frequencies, with certain crops like corn, tomatoes, and peas appearing especially sensitive. This suggests that the wireless radiation we consider safe may be causing measurable biological changes in living organisms.
Akbarnejad Z et al. · 2017
Researchers exposed rats with Alzheimer's-like brain damage to 50 Hz electromagnetic fields (the same frequency as power lines) for 14 days and tested their memory using a water maze. The electromagnetic field exposure significantly improved the rats' learning and memory abilities, even reversing some of the cognitive damage. This suggests that certain electromagnetic frequencies might have therapeutic potential for neurodegenerative conditions.
Othman H, Ammari M, Sakly M, Abdelmelek H · 2017
Researchers exposed pregnant rats to 2.45GHz WiFi signals (the same frequency used by most home routers) for 2 hours daily throughout pregnancy, then tested their offspring for developmental and behavioral changes. They found that prenatal WiFi exposure altered physical development and caused anxiety, motor problems, and learning difficulties in the young rats, with effects being more severe when combined with maternal stress. The study also revealed oxidative stress (cellular damage) in the brains of exposed offspring.
Hassanshahi A et al. · 2017
Researchers exposed male rats to Wi-Fi radiation (2.4 GHz) for 12 hours daily over 30 days and tested their ability to recognize and remember objects using different senses. The Wi-Fi-exposed rats showed significant impairment in object recognition tasks, failing to distinguish between familiar and new objects whether using touch, vision, or combined senses. This suggests that chronic Wi-Fi exposure may interfere with how the brain processes and integrates sensory information.
Kim SJ et al. · 2017
Researchers exposed immune cells called macrophages to 60 Hz magnetic fields at 0.8 mT (similar to power line frequencies) and found the fields significantly increased inflammatory responses. The EMF exposure boosted production of inflammatory molecules like nitric oxide and cytokines, while also reducing the effectiveness of antioxidants that normally help control inflammation. This suggests that everyday electromagnetic field exposure might make our immune cells more prone to chronic inflammation.
Medina-Fernandez FJ et al. · 2017
Researchers exposed rats with multiple sclerosis-like symptoms to magnetic field stimulation (0.7 mT at 60 Hz) for 2 hours daily over 3 weeks. The magnetic field treatment significantly reduced brain and spinal cord damage, improved motor symptoms, and decreased harmful oxidative stress while boosting protective antioxidant systems. This suggests that certain types of electromagnetic field exposure may actually have therapeutic benefits for neurological conditions.
Medina-Fernandez FJ et al. · 2017
Researchers used magnetic field therapy (similar to medical TMS treatment) on rats with an artificially induced multiple sclerosis-like condition. The 60 Hz magnetic fields at 0.7 milliTesla significantly reduced brain damage, improved motor symptoms, and decreased harmful oxidative stress. This suggests that controlled magnetic field exposure might have therapeutic potential for neurological conditions involving brain inflammation.
Chandel S, Kaur S, Singh HP, Batish DR, Kohli RK. · 2017
Researchers exposed onion roots to 2100 MHz cell phone radiation for 1-4 hours and measured cellular damage markers. The exposure triggered increased production of harmful reactive oxygen species (unstable molecules that damage cells) and forced the plants to ramp up their antioxidant defenses. This demonstrates that cell phone frequencies can disrupt normal cellular processes even in plant tissue.
Shirai T et al. · 2017
Researchers exposed pregnant rats and their offspring to eight different wireless communication frequencies (from cell phones to WiFi) for 20 hours daily throughout pregnancy and early development. They found no adverse effects on pregnancy outcomes, offspring development, memory function, or reproductive ability across two generations of rats. This study suggests that simultaneous exposure to multiple wireless frequencies at communication signal levels may not harm reproductive health or early development.
Djordjevic NZ, Paunović MG, Peulić AS · 2017
Researchers exposed rats to 50 Hz electromagnetic fields (the type from power lines and household wiring) for one week and found the animals developed anxiety-like behaviors. Brain analysis revealed increased oxidative stress and nitric oxide in the hypothalamus, the brain region that regulates emotions and stress responses. This suggests that even short-term exposure to extremely low frequency EMFs can alter brain chemistry in ways that affect mood and behavior.
Djordjevic NZ, Paunović MG, Peulić AS. · 2017
Researchers exposed rats to 50 Hz electromagnetic fields (the same frequency as household electricity) for seven days and found it caused anxiety-like behaviors. The EMF exposure increased harmful oxidative stress compounds in the brain region that controls stress responses. This suggests that common power line frequencies may directly affect brain chemistry and emotional well-being.