3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Whole Home EMF Research

ELF MagneticELF ElectricRF

Research on EMF throughout the home - electrical wiring, smart home hubs, and WiFi coverage.

5
Sources
2,549
Studies
3
EMF Types

Related Studies (1,669)

Compliance boundaries for multiple-frequency base station antennas in three directions.

Thielens A, Vermeeren G, Kurup D, Joseph W, Martens L. · 2013

Researchers analyzed how close people can safely get to cell tower antennas operating at different frequencies (900 MHz to 2600 MHz) without exceeding safety limits. They found that current safety guidelines aren't always protective when the antenna is small compared to body size, and determined specific distances needed for compliance in front, back, and side positions. The study provides a method for calculating safe distances when multiple frequencies operate simultaneously.

Cellular EffectsNo Effects Found

Exposure to acute electromagnetic radiation of mobile phone exposure range alters transiently skin homeostasis of a model of pigmented reconstructed epidermis.

Simon D et al. · 2013

French researchers exposed lab-grown skin models to cell phone radiation (900 MHz) for 6 hours to see if it affected skin health and structure. While they found no major damage or cell death, the radiation did cause temporary changes in key skin proteins that help maintain the skin's protective barrier. The researchers concluded this could potentially weaken the skin's ability to protect against environmental threats.

Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice.

Wang X et al. · 2013

Researchers exposed young adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice when tested in maze tasks. This unexpected finding suggests that magnetic field exposure during adolescence might enhance certain cognitive abilities, though the implications for human brain development remain unclear.

Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice.

Wang X et al. · 2013

Researchers exposed adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice. This unexpected finding suggests that certain EMF exposures during development might enhance rather than harm specific brain functions, though the implications for human health remain unclear.

Effect of bluetooth headset and mobile phone electromagnetic fields on the human auditory nerve

Mandalà M et al. · 2013

Researchers directly exposed the auditory nerves of 12 patients to both mobile phone radiation (900 MHz) and Bluetooth headset radiation (2.4 GHz) during surgery. They found that mobile phone EMFs significantly impaired nerve function by reducing signal strength and delaying response times, while Bluetooth EMFs caused no measurable changes. This suggests Bluetooth headsets may be a safer alternative for protecting auditory nerve health during phone calls.

Superposition of an incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 1.8 GHz pulse-modulated radiofrequency radiation.

Sun W, Shen X, Lu D, Lu D, Chiang H · 2013

Researchers exposed human cells to 1.8 GHz radiofrequency radiation (similar to cell phone signals) and found it triggered abnormal clustering and activation of cellular receptors that control cell growth. Interestingly, when they added a weak 'noise' magnetic field alongside the RF exposure, it completely blocked these cellular changes at moderate power levels, suggesting the magnetic field provided some protection against RF-induced cellular disruption.

Analysis of mobile phone design features affecting radiofrequency power absorbed in a human head phantom.

Kuehn S, Kelsh MA, Kuster N, Sheppard AR, Shum M. · 2013

Researchers analyzed how different cell phone designs affect the amount of radiofrequency energy absorbed by the head during calls. They found that phone technology type made the biggest difference in energy absorption, with older AMPS phones creating the highest levels and GSM phones the lowest. Phone shape, antenna design, and how you hold the phone also mattered, but to a lesser degree.

Brain & Nervous SystemNo Effects Found

No influence of acute RF exposure (GSM-900, GSM-1800, and UMTS) on mouse retinal ganglion cell responses under constant temperature conditions

Ahlers MT, Ammermüller J · 2013

German researchers exposed isolated mouse retinal tissue to cell phone radiation at various power levels (including some 10 times higher than typical phone use) to see if it affected eye cells that help process vision. They found no changes in how these retinal ganglion cells responded to light, even at the highest radiation levels tested. The study was carefully controlled to eliminate temperature effects, focusing only on potential non-thermal impacts of RF radiation on eye function.

Brain & Nervous SystemNo Effects Found

No influence of acute RF exposure (GSM-900, GSM-1800, and UMTS) on mouse retinal ganglion cell responses under constant temperature conditions.

Ahlers MT, Ammermüller J. · 2013

German researchers exposed isolated mouse retina cells to mobile phone radiation (GSM-900, GSM-1800, and UMTS) at various power levels while carefully controlling temperature. They found no changes in how these vision-critical cells responded to light stimuli, even at radiation levels 10 times higher than typical phone use. This suggests mobile phone radiation doesn't directly interfere with retinal function under controlled laboratory conditions.

Cellular EffectsNo Effects Found

Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

Ketabi N, Mobasheri H, Faraji-Dana R. · 2013

Iranian researchers exposed protein ion channels (tiny gateways in cell membranes) to cell phone frequencies between 910-990 MHz and found that the electromagnetic fields made these channels more sensitive to electrical changes. While the channels still functioned normally, they responded more readily to voltage changes when exposed to EMF, with the strongest effect occurring at 930 MHz. This suggests that cell phone radiation can subtly alter how cellular components behave at the molecular level, even without causing obvious damage.

Brain & Nervous SystemNo Effects Found

The effects of exposure to 915 MHz radiofrequency identification on cerebral glucose metabolism in rat: A [F-18] FDG micro-PET study.

Kim HS et al. · 2013

Researchers exposed rats to 915 MHz radiofrequency radiation (used in RFID systems) for up to 16 weeks and measured brain glucose metabolism using advanced PET scanning. They found no changes in how the brain used glucose in any region tested, even at high exposure levels of 4 W/kg SAR. This suggests RFID radiation at these levels doesn't alter basic brain energy function in the short to medium term.

Brain & Nervous SystemNo Effects Found

The effects of exposure to 915 MHz radiofrequency identification on cerebral glucose metabolism in rat: A [F-18] FDG micro-PET study.

Kim HS et al. · 2013

Researchers exposed rats to 915 MHz RFID radiation for up to 16 weeks at high intensity levels (4 W/kg SAR) and measured brain glucose metabolism using advanced PET scanning. They found no changes in how the brain processed glucose in any region examined, suggesting this type of radiofrequency exposure didn't alter basic brain energy function. This matters because brain glucose metabolism is a fundamental indicator of neural activity and health.

p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure

Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. · 2013

Researchers exposed newborn rat brain cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for just 10 minutes and found significant neuronal damage. The radiation triggered a harmful cellular pathway that led to decreased cell survival, increased cell death, and abnormal protein changes associated with neurodegeneration. This suggests that even brief RF exposure can activate damaging processes in developing brain cells.

p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure.

Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. · 2013

Researchers exposed newborn rat brain cells to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwaves) for just 10 minutes and found significant neuronal damage. The brain cells showed decreased viability, increased cell death, and abnormal protein changes associated with neurodegenerative diseases like Alzheimer's. The study identified a specific cellular pathway (p25/CDK5) that appears to drive this RF-induced brain cell injury.

Radio FrequencyNo Effects Found

The effects of metamaterial on electromagnetic fields absorption characteristics of human eye tissues.

Gasmelseed A, Yunus J. · 2013

Researchers used computer modeling to study how electromagnetic fields from a 900 MHz antenna (similar to cell phone frequencies) are absorbed by different parts of the human eye when a special material called metamaterial is present. They found that the specific absorption rate (SAR) - a measure of how much electromagnetic energy the eye tissues absorb - remained unchanged regardless of the metamaterial's properties. This suggests that certain engineered materials may not provide the electromagnetic shielding benefits for eye protection that some might expect.

Increased vascular permeability in the circumventricular organs of adult rat brain due to stimulation by extremely low frequency magnetic fields

Gutiérrez-Mercado YK et al. · 2013

Researchers exposed rats to extremely low frequency magnetic fields (120 Hz at 0.66 mT) and found that these fields increased blood vessel permeability in specific brain regions called circumventricular organs. The magnetic field exposure caused blood vessels to dilate and become more permeable to substances that normally can't cross into brain tissue. This suggests that ELF magnetic fields can compromise the brain's protective blood barrier system.

Effects of ELF Magnetic Field in Combination with Iron(III) Chloride (FeCl3) on Cellular Growth and Surface Morphology of Escherichia coli (E. coli)

Esmekaya MA et al. · 2013

Scientists exposed E. coli bacteria to power line frequency magnetic fields for 24 hours. While the bacteria survived and reproduced normally, the electromagnetic exposure damaged their cell surfaces, creating holes and destroying outer membranes. This shows EMF can cause cellular damage even when organisms appear healthy.

FAQs: EMF in Whole Home

The whole home environment contains several common sources of electromagnetic field exposure including electrical wiring, wifi routers, smart meters, power lines, appliances. Together, these 5 sources account for 2,549 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 2,549 peer-reviewed studies in our database examining EMF sources commonly found in whole home environments. These studies cover 5 different EMF sources: Electrical Wiring (411 studies), WiFi Routers (302 studies), Smart Meters (1,014 studies), Power Lines (411 studies), Appliances (411 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Smart Meters has the most research with 1,014 studies, followed by Electrical Wiring (411) and Power Lines (411). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in whole home settings.