Aydin D et al. · 2011
Researchers analyzed how memory errors and study participation bias affect mobile phone brain tumor studies in children and teens. They found that brain tumor patients overestimated their phone use by much smaller amounts than healthy controls, with patients overestimating call duration by 52% while controls overestimated by 163%. This suggests previous studies may have underestimated the actual risk of mobile phones causing brain tumors in young people.
Chaturvedi CM et al. · 2011
Researchers exposed mice to 2.45 GHz microwave radiation (the same frequency used in WiFi and microwave ovens) for 2 hours daily over 30 days. The exposed mice showed disrupted sleep patterns, increased blood cell counts, DNA damage in brain cells, and impaired spatial memory compared to unexposed mice. This study suggests that chronic exposure to common wireless frequencies may affect brain function and biological rhythms.
Maaroufi K et al. · 2011
Researchers exposed young adult rats to electromagnetic fields at 150 kHz frequency and examined how this affected their brains' ability to handle iron buildup. They found that EMF exposure increased harmful oxidative damage in brain tissue and prevented the brain's natural protective responses that normally help deal with excess iron. This suggests that EMF exposure may make the brain more vulnerable to iron-related damage.
Panda NK, Modi R, Munjal S, Virk RS. · 2011
Researchers tested the hearing of 125 long-term mobile phone users and compared them to 58 people who never used mobile phones. They found that both GSM and CDMA phone users had significantly more hearing damage, including problems with the inner ear (cochlea) and brain's auditory processing centers. The damage was worse in people who used phones for more than 3 years and affected both ears equally.
Kaprana AE et al. · 2011
Researchers exposed rabbits to cell phone radiation for one hour and measured brain activity that processes hearing. They found radiation significantly delayed nerve signals after just 15 minutes of exposure. Effects disappeared within 24 hours, showing cell phone radiation temporarily disrupts normal auditory brain function.
Prochnow N et al. · 2011
German researchers exposed rats to 3G cell phone radiation at different power levels for two hours. Low exposure (2 W/kg) caused no memory problems, but high exposure (10 W/kg) significantly impaired the brain's ability to form memories, suggesting a threshold for wireless radiation effects.
Poulletier de Gannes F et al. · 2011
French researchers exposed human brain cells (neurons, astrocytes, and microglia) to EDGE cell phone signals at 1800 MHz for up to 24 hours, measuring whether this caused oxidative stress (cellular damage from free radicals). Even at high exposure levels of 10 W/kg - far exceeding typical phone use - the radiofrequency radiation did not increase production of harmful reactive oxygen species in any of the brain cell types tested.
Partsvania B, Sulaberidze T, Shoshiashvili L, Modebadze Z · 2011
Scientists exposed mollusk neurons to 900-MHz cell phone radiation at low levels. While the neurons' basic function remained normal, they responded to signals significantly faster during exposure. This suggests cell phone radiation can alter how quickly nerve cells process information, even temporarily.
Ntzouni MP, Stamatakis A, Stylianopoulou F, Margaritis LH · 2011
Greek researchers exposed mice to mobile phone radiation at levels similar to what humans experience during phone calls (SAR 0.22 W/kg) and tested their ability to recognize objects they had seen before. The study found that chronic exposure for 17 days significantly impaired the mice's short-term memory, particularly during the critical period when memories are being consolidated and stored in the brain. This suggests that mobile phone radiation may interfere with the brain's ability to form and retain new memories.
Masuda H et al. · 2011
Japanese researchers exposed rat brain tissue to 2-GHz radiofrequency radiation at various intensities and measured changes in blood flow and temperature. They found that RF exposure significantly increased both local brain blood flow and temperature in a dose-dependent manner - the higher the exposure, the greater the response. This demonstrates that RF radiation directly affects brain physiology by triggering the body's natural response to increased heat in brain tissue.
Lowden A et al. · 2011
Researchers exposed 48 people to cell phone radiation for 3 hours before bedtime. The radiation reduced deep sleep by 12% and delayed its onset by nearly 5 minutes, demonstrating that phone exposure can measurably disrupt sleep quality even without users noticing.
Carballo-Quintás M et al. · 2011
Spanish researchers exposed rats to cell phone radiation at 900 MHz (similar to what phones emit) and found it triggered brain stress markers, especially when combined with a seizure-inducing drug called picrotoxin. The radiation activated neurons and caused inflammation in multiple brain regions, with effects lasting up to three days after exposure. This suggests that cell phone radiation may make the brain more vulnerable to neurological stress and damage.
Trosić I et al. · 2011
Researchers exposed rats to cell phone radiation at 915 MHz for one hour daily over two weeks and examined DNA damage in brain, liver, and kidney cells using a comet assay test. They found measurable DNA breaks in liver and kidney cells, with less pronounced effects in brain cells. This suggests that radiofrequency radiation at levels similar to cell phone emissions can cause genetic damage in multiple organs.
Lahijani MS, Bigdeli MR, Kalantary S. · 2011
Researchers exposed chicken embryos to magnetic fields similar to power lines before incubation and studied their brain development for 14 days. The exposed embryos showed significant brain damage including increased cell death and tissue breakdown compared to unexposed controls. This suggests that magnetic field exposure during critical development periods can harm the developing nervous system.
He LH, Shi HM, Liu TT, Xu YC, Ye KP, Wang S. · 2011
Researchers exposed adult rats to 50-Hz magnetic fields (the same frequency as power lines) for either 1 or 4 hours daily over 4 weeks. They found that rats exposed for 4 hours showed increased anxiety-like behaviors but also improved spatial learning and long-term memory. This suggests that extremely low frequency magnetic fields can affect both emotional and cognitive brain functions, even at relatively short daily exposure periods.
Corbacio M et al. · 2011
Scientists tested 99 people performing memory tasks while exposed to strong 60 Hz magnetic fields. The magnetic field exposure blocked the normal learning improvement that occurs with practice on cognitive tests, suggesting these industrial-strength fields may interfere with the brain's ability to form new memories.
Ciejka E, Kleniewska P, Skibska B, Goraca A. · 2011
Researchers exposed rats to magnetic fields similar to therapeutic devices for 30 or 60 minutes daily. Thirty minutes caused brain cell damage, but sixty minutes activated protective responses. This shows exposure duration determines whether magnetic fields harm or help the brain adapt.
Chu LY et al. · 2011
Researchers exposed mice to 60 Hz magnetic fields (the same frequency used in power lines and household electricity) for 3 hours and found significant oxidative stress in the brain's cerebellum. The magnetic field exposure increased harmful molecules that damage cells while decreasing protective antioxidants like vitamin C. This suggests that even short-term exposure to power-frequency magnetic fields can disrupt the brain's natural defense systems against cellular damage.
Amara S et al. · 2011
Scientists exposed rats to static magnetic fields for 30 days, both alone and with cadmium toxin. Magnetic field exposure worsened cadmium's harmful brain effects, increasing cellular damage and reducing protective antioxidants. This suggests magnetic fields may make brains more vulnerable to environmental toxins.
Kesari KK, Kumar S, Behari J. · 2011
Researchers exposed young rats to cell phone radiation (900 MHz) for two hours daily over 45 days. The study found increased harmful molecules and reduced protective antioxidants in brain tissue, suggesting cell phone radiation may cause oxidative stress that could contribute to neurological problems.
Chen YB, Li J, Liu JY, Zeng LH, Wan Y, Li YR, Ren D, Guo GZ. · 2011
Researchers exposed mice to intense electromagnetic pulses (400,000 volts per meter) and found it significantly impaired their ability to learn new tasks for up to 24 hours. The exposure caused oxidative stress in brain tissue, damaging brain cells through increased harmful molecules and reduced protective antioxidants. When mice were given vitamin E beforehand, it protected them from these harmful effects.
McCarty DE et al. · 2011
Scientists tested a doctor claiming electromagnetic hypersensitivity using 60 Hz electric fields in a double-blind study. She developed headaches, muscle twitching, and heart irregularities within 100 seconds of exposure, proving electromagnetic hypersensitivity can be a measurable neurological condition.
Osera C et al. · 2011
Italian researchers exposed brain cancer cells to 75 Hz electromagnetic fields and found the exposure triggered protective responses, including increased stress-defense proteins and healthier processing of proteins linked to Alzheimer's disease, suggesting specific frequencies might help protect brain cells from damage.
Ghodbane S et al. · 2011
Researchers exposed rats to strong magnetic fields for five days and found the exposure depleted selenium levels and disrupted protective antioxidant enzymes in organs. However, selenium supplements prevented this damage, suggesting proper nutrition may help protect against magnetic field-induced cellular stress.
Ciejka E, Kleniewska P, Skibska B, Goraca A · 2011
Researchers exposed rats to 40 Hz magnetic fields at 7 mT (milliTesla) for either 30 or 60 minutes daily over 10 days to study brain cell damage. They found that shorter exposures (30 minutes) increased harmful oxidative stress markers in the brain, while longer exposures (60 minutes) triggered protective adaptation responses. This suggests that magnetic field exposure duration significantly affects how the brain responds to electromagnetic stress.