Hässig M, Jud F, Naegeli H, Kupper J, Spiess BM. · 2009
Swiss researchers studied 253 veal calves to see if mobile phone base stations could cause cataracts (clouding of the eye lens). They found that 32% of calves developed cataracts, with those exposed during early pregnancy showing higher rates of oxidative stress (cellular damage from free radicals) when living closer to cell towers. The study suggests a possible link between radio frequency radiation and eye damage during critical developmental periods.
Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR. · 2009
Turkish researchers exposed rats to cell phone radiation (900 MHz) for 2 hours daily over 10 months to study brain cell death and oxidative stress. Surprisingly, they found that radiation exposure actually reduced brain cell death (apoptosis) and increased antioxidant activity compared to unexposed rats. This unexpected protective effect challenges assumptions about cell phone radiation's impact on brain tissue.
Balci M, Namuslu M, Devrim E, Durak I · 2009
Researchers exposed rats to computer monitor radiation for three weeks and found it caused oxidative stress (cellular damage from harmful molecules) in eye tissues. The study showed increased levels of damaging compounds in both the cornea and lens of the eye. Vitamin C supplementation appeared to provide some protection, particularly for lens tissue.
Capone F et al. · 2009
Researchers exposed 22 healthy volunteers to pulsed electromagnetic fields (PEMFs) for 45 minutes and measured brain activity using transcranial stimulation. They found that PEMF exposure increased brain excitability by about 20%, specifically enhancing glutamate activity (a key brain chemical involved in nerve communication). This suggests that even short-term magnetic field exposure can produce measurable changes in how the human brain functions.
Zareen N, Khan MY, Ali Minhas L · 2009
Researchers exposed developing chicken embryos to 1800 MHz radiofrequency radiation from a mobile phone during critical stages of eye development. They found that the radiation disrupted normal retinal development, causing both growth abnormalities and changes in pigmentation patterns depending on when during development the exposure occurred. This suggests that EMF radiation can interfere with the precise developmental processes needed for proper eye formation.
Vácha M, Puzová T, Kvícalová M · 2009
Researchers studied how radio frequency magnetic fields affect the ability of American cockroaches to sense Earth's magnetic field for navigation. They found that weak RF fields at specific frequencies disrupted the insects' magnetic navigation system, with the strongest disruption occurring at 1.2 MHz at levels as low as 12-18 nanotesla. This suggests that common electromagnetic pollution could interfere with the natural navigation abilities of insects and other animals.
Söderqvist F, Carlberg M, Hardell L · 2009
Swedish researchers studied 1,000 people to see if mobile and cordless phone use affected transthyretin, a protein that helps protect the brain by maintaining the blood-brain barrier. They found that long-term phone users had altered levels of this protective protein, with different patterns for men and women, and that recent phone calls appeared to trigger immediate changes in women's blood protein levels.
Zhijian C et al. · 2009
Researchers exposed human white blood cells to cell phone radiation at safety limits for 24 hours, then tested DNA repair after X-ray damage. The radiation didn't cause DNA damage or interfere with natural repair processes, suggesting current safety limits may not impair cellular DNA repair.
Xu Q, Tong J, Jin ZD, Lu MX, DU HB, Cao Y. · 2009
Researchers exposed mice to low-intensity microwave radiation (900 MHz at 120 microwatts per square centimeter) for 14 days, then subjected them to harmful gamma radiation. Surprisingly, mice that received both exposures showed less tissue damage and faster recovery than those exposed to gamma radiation alone. The microwave exposure appeared to boost the mice's natural antioxidant defenses and reduce cell death in bone marrow and spleen tissue.
Trosić I, Pavicić I. · 2009
Researchers exposed hamster cells to mobile phone radiation (935 MHz) at low power levels for 1-3 hours and tracked their growth over four days. They found that cells exposed for three hours showed reduced growth 72 hours later and immediate damage to their internal scaffolding structures called microtubules. This suggests that even brief exposures to cell phone-level radiation can disrupt normal cellular function and growth patterns.
Tkalec M et al. · 2009
Scientists exposed onion seeds to cell phone-level radiation (400 and 900 MHz) for two hours. While seeds germinated normally, their dividing cells showed significant chromosome damage and abnormalities. This suggests radiofrequency radiation can disrupt cellular processes even when overall growth appears unaffected.
Sharma VP, Singh HP, Kohli RK, Batish DR · 2009
Researchers exposed mung bean sprouts to 900 MHz cell phone radiation and found it significantly stunted root growth and seed germination within just one to two hours. The radiation caused oxidative stress, demonstrating that radio frequency signals can disrupt basic biological processes in living organisms.
Sannino A et al. · 2009
Researchers exposed human immune cells to cell phone radiation for 20 hours, then damaged them with chemicals. In most people tested, pre-exposed cells showed less DNA damage than unexposed cells, suggesting radiation may trigger protective responses that vary between individuals.
Pérez-Castejón C et al. · 2009
Spanish researchers exposed human brain cancer cells (astrocytoma) to pulsed microwave radiation at 9.6 GHz for various time periods up to 24 hours. They found that after 24 hours of exposure, the cancer cells showed significantly increased proliferation (growth and division) compared to unexposed cells, even at extremely low power levels. This suggests that microwave radiation may accelerate the growth of existing brain tumors.
Moisescu MG, Leveque P, Verjus MA, Kovacs E, Mir LM. · 2009
French researchers exposed mouse cells to 900 MHz cell phone radiation and found it accelerated endocytosis, the process cells use to absorb nutrients and other substances. This suggests cell phone signals can alter fundamental cellular functions at the molecular level, potentially affecting how cells process essential materials.
Li X et al. · 2009
Researchers exposed rats to microwave radiation at various power levels and found abnormal changes in a brain protein that regulates water balance in the hippocampus, the brain's memory center. Higher exposures caused persistent protein increases that didn't recover, suggesting potential blood-brain barrier damage.
Gao XF et al. · 2009
Researchers exposed Sertoli cells (crucial cells that support sperm production in the testicles) to microwave radiation at different power levels for five minutes. They found that higher intensity radiation (100 mW/cm²) disrupted normal cell division, increased cell death, and caused calcium levels inside cells to spike. This suggests that microwave radiation can damage the cells essential for male fertility.
Gao XF,Pei LP, Chen CH, Yang XS, Zhang GB, Deng ZH, Yu ZP. · 2009
Researchers exposed rats to high-level microwave radiation for 20 minutes and found increased production of heat shock protein 70 in the brain's hippocampus. This protein signals cellular stress, indicating microwave radiation triggers the brain's defense mechanisms against potential damage.
Del Vecchio G et al. · 2009
Researchers exposed developing brain cells to cell phone radiation (900 MHz GSM at 1 W/kg) for up to 6 days and found that the radiation significantly reduced the growth of neurites - the branch-like extensions that neurons use to connect with each other. This disruption occurred in both mouse and rat brain cells, suggesting that cell phone radiation may interfere with normal brain development at the cellular level.
Del Vecchio G et al. · 2009
Italian scientists exposed brain cells to cell phone radiation for six days. The radiation alone didn't harm cells, but when combined with hydrogen peroxide, it increased damage to certain brain cells. This suggests cell phone radiation might amplify other sources of brain cell damage.
Cao Y, Xu Q, Lu MX, Jin ZD, DU HB, Li JX, Nie JH, Tong J. · 2009
Chinese researchers exposed mice to low-level 900 MHz microwave radiation (the same frequency used by cell phones) before subjecting them to high-dose gamma radiation that typically damages blood-forming cells. They found that the microwave pre-exposure actually protected the mice, improving their survival rates and helping maintain healthy blood cell production. This suggests that certain levels of microwave radiation might stimulate protective biological responses rather than cause harm.
Brescia F et al. · 2009
Researchers exposed human immune cells to 3G cell phone radiation at levels similar to what phones emit, testing whether this radiation creates harmful reactive oxygen species (unstable molecules that can damage cells). Even after 24 hours of exposure, the radiation produced no increase in these damaging molecules and didn't harm cell survival. The study also tested whether radiation might amplify damage from iron compounds, but found no such interaction.
Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S. · 2009
Researchers exposed young female rats to cell phone radiation (900 MHz) for one hour daily over 28 days and found significant loss of brain cells in the hippocampus, a region critical for memory and learning. The radiation levels used (0.016-2 W/kg SAR) overlap with what people experience during cell phone use. This cellular damage was visible both through precise cell counting and direct microscopic observation.
Reba Goodman et al. · 2009
Researchers exposed flatworms (planaria) to 60 Hz magnetic fields at 80 milliGauss for one hour twice daily during regeneration after being cut in half. The EMF-exposed worms regenerated faster than unexposed controls, with tail portions growing eyes 48 hours earlier and showing increased levels of stress proteins typically associated with healing and repair processes.
Varró P, Szemerszky R, Bárdos G, Világi I. · 2009
Researchers exposed rat brain tissue to 50 Hz magnetic fields at power line levels. The exposure altered how brain cells communicate and increased seizure-like activity. This suggests electromagnetic fields from power infrastructure may affect brain function, though effects appeared temporary.