3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 28 studies (Insects & Invertebrates)

Long - term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: Effects on antioxidant biomarkers and nymphal gut mass.

Todorović D et al. · 2019

Researchers exposed cockroach nymphs to magnetic fields for 5 months and found significant biological changes, including reduced gut mass and altered antioxidant enzyme activity. The magnetic fields (both static and extremely low frequency) acted as biological stressors, disrupting the insects' cellular defense systems that protect against oxidative damage. This demonstrates that long-term magnetic field exposure can cause measurable biological stress responses in living organisms.

Magnetoreception Regulates Male Courtship Activity in Drosophila.

Wu CL, Fu TF, Chiang MH, Chang YW, Her JL, Wu T. · 2016

Researchers exposed male fruit flies to static magnetic fields as low as 20 Gauss (about 40 times Earth's natural magnetic field) and found it significantly increased their courtship behavior. The effect depended on cryptochrome, a protein that helps animals sense magnetic fields and is also found in humans. This study demonstrates that relatively weak magnetic fields can alter behavior through biological magnetic sensing mechanisms.

Whole Body / GeneralNo Effects Found

Response of Caenorhabditis elegans to wireless devices radiation exposure.

Fasseas MK et al. · 2015

Greek researchers exposed microscopic worms (C. elegans) to radiation from cell phones, WiFi routers, and cordless phones at levels below international safety guidelines. They found no effects on the worms' lifespan, fertility, growth, memory, or cellular damage markers. The study suggests these worms are resilient to wireless device radiation under the tested conditions.

Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti.

Cammaerts M-C, Vandenbosch GAE, Volski V. · 2014

Researchers exposed ant colonies to cell phone radiation at levels legally permitted in Brussels (1.5 V/m) for just 10 minutes and observed significant changes in their behavior. The ants showed reduced ability to follow scent trails, decreased orientation toward alarm signals, and altered movement patterns. This matters because ants use similar biological processes to humans for navigation and communication, suggesting that common environmental EMF levels may affect basic biological functions.

Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia.

Hernádi L, László JF. · 2014

Researchers exposed snails to a static magnetic field for 30 minutes and tested their pain response using a hot plate test. The magnetic field exposure significantly altered the snails' response time to heat by up to 47%, affecting brain chemicals involved in pain perception including serotonin and opioid systems. This demonstrates that magnetic fields can directly influence nervous system function and pain processing in living organisms.

Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura.

Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. · 2014

Researchers exposed fruit flies to 50 Hz magnetic fields (the same frequency as power lines) at 0.5 milliTesla for 48 hours and tracked their development and behavior. The magnetic field exposure shortened development time, increased survival rates, but significantly reduced the flies' movement and activity levels. This study demonstrates that extremely low frequency magnetic fields can alter both biological development and nervous system function in living organisms.

Comparisons of Responses by Planarian to Micromolar to Attomolar Dosages of Morphine or Naloxone and/or Weak Pulsed Magnetic Fields: Revealing Receptor Subtype Affinities and Nonspecific Effects.

Murugan NJ, Persinger MA. · 2014

Researchers exposed flatworms (planaria) to extremely weak magnetic fields (5 microTesla) for 2 hours and measured their movement speed. The magnetic field exposure reduced the worms' activity by about 50%, similar to the effects of morphine and other opioid drugs. This suggests that weak magnetic fields can affect nervous system function in ways that mimic drug effects.

Pharmacological analysis of response latency in the hot plate test following whole-body static magnetic field-exposure in the snail Helix pomatia

Hernádi L, László JF. · 2014

Researchers exposed snails to a static magnetic field (147 mT) for 30 minutes and tested how quickly they responded to heat on a hot plate. The magnetic field exposure significantly slowed the snails' pain responses by up to 47%, suggesting the magnetic field affected their nervous system's ability to process pain signals through serotonin and opioid pathways.

Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity of Drosophila subobscura.

Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. · 2014

Scientists exposed fruit flies to 50 Hz magnetic fields (power line frequency) and found the fields reduced adult fly movement and activity, regardless of when exposure occurred. This demonstrates that common electrical frequencies can alter nervous system function in living organisms.

Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti

Cammaerts M-C, Vandenbosch GAE, Volski V · 2014

Belgian researchers exposed ant colonies to GSM cell phone radiation at levels legally allowed in Brussels (1.5 V/m) for 10-minute periods and observed their behavior. The ants showed measurable changes in their movement patterns, had trouble following scent trails efficiently, and became less responsive to their alarm pheromones. This suggests that even brief exposures to everyday cell phone radiation levels can disrupt the nervous system functioning of these insects.

Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

Cammaerts MC, Rachidi Z, Bellens F, De Doncker P. · 2013

Researchers studied how electromagnetic radiation affects ant colonies' ability to communicate and gather food using chemical signals called pheromones. They found that exposed ants could no longer follow scent trails, locate marked food areas, or respond to alarm signals, causing their colonies to deteriorate after just 180 hours of exposure. This suggests electromagnetic fields can disrupt the complex chemical communication systems that social insects depend on for survival.

Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure.

Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P · 2013

Researchers exposed fruit flies (Drosophila) to extremely low frequency electromagnetic fields and found significant changes in gene expression affecting reproduction, aging, and cellular stress responses. Short-term exposure reduced male reproductive ability and altered expression of over 1,300 genes, while long-term exposure changed expression of more than 1,700 genes. The study suggests EMF exposure may accelerate cellular aging and compromise reproductive function through effects on sperm development.

Effect of 60 minutes exposure to electromagnetic field on fecundity, learning and memory, speed of movement and whole body protein of the fruit fly Drosophila melanogaster.

El Kholy SE, El Husseiny EM. · 2012

Researchers exposed fruit fly larvae to electromagnetic fields from four different electrical devices, including mobile phones, for 60 minutes to study effects on behavior and proteins. They found that EMF exposure significantly altered learning and memory function and increased movement speed by 2.5 times in larvae exposed to mobile phones, while also changing protein patterns in the flies' bodies. These findings suggest that even brief EMF exposure can affect brain function and cellular processes in developing organisms.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia

Nittby H et al. · 2012

Researchers exposed land snails to cell phone radiation at 1900 MHz for one hour and tested their response to heat-induced pain. The exposed snails showed reduced sensitivity to thermal pain compared to unexposed controls, suggesting the radiofrequency radiation acted as a pain reliever. This finding indicates that non-thermal levels of cell phone radiation can alter nervous system responses in living organisms.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia.

Nittby H et al. · 2012

Swedish researchers exposed land snails to cell phone radiation at 1900 MHz (the same frequency used by many mobile phones) for one hour, then tested their response to painful heat. The radiation-exposed snails showed significantly reduced sensitivity to pain compared to unexposed snails, suggesting the electromagnetic fields had an anesthetic-like effect on their nervous systems.

Radio frequency magnetic fields disrupt magnetoreception in American cockroach.

Vácha M, Puzová T, Kvícalová M · 2009

Researchers studied how radio frequency magnetic fields affect the ability of American cockroaches to sense Earth's magnetic field for navigation. They found that weak RF fields at specific frequencies disrupted the insects' magnetic navigation system, with the strongest disruption occurring at 1.2 MHz at levels as low as 12-18 nanotesla. This suggests that common electromagnetic pollution could interfere with the natural navigation abilities of insects and other animals.

Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria

Reba Goodman et al. · 2009

Researchers exposed flatworms (planaria) to 60 Hz magnetic fields at 80 milliGauss for one hour twice daily during regeneration after being cut in half. The EMF-exposed worms regenerated faster than unexposed controls, with tail portions growing eyes 48 hours earlier and showing increased levels of stress proteins typically associated with healing and repair processes.

Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not induce hsp16-1 heat-shock gene expression in Caenorhabditis elegans.

Dawe AS et al. · 2008

Scientists exposed microscopic worms to cell phone-level radiation (1.8 GHz) to test if it triggers cellular stress responses. The radiation didn't activate stress proteins, and may have slightly reduced them by 15%. This suggests cell phone emissions don't trigger this particular stress response in these organisms.

Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

Lee KS, Choi JS, Hong SY, Son TH, Yu K. · 2008

Researchers exposed fruit flies to cell phone radiation at two different intensities to see how it affected their survival and cellular responses. At the current safety limit (1.6 W/kg), most flies survived 30 hours of exposure, but at higher levels (4.0 W/kg), flies began dying after 12 hours. The radiation triggered different cellular stress pathways depending on the intensity, with higher levels causing brain cell death.

A method for detecting the effect of magnetic field on activity changes of neuronal populations of Morimus funereus (Coleoptera, Cerambycidae).

Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdzić D. · 2007

Researchers exposed endangered longhorn beetles to weak magnetic fields (2 milliTesla) for five minutes and monitored their brain nerve activity. The magnetic field caused permanent changes to nerve cell activity in 7 out of 8 beetles tested, with some neurons becoming more active and others less active. This demonstrates that even brief exposure to relatively weak magnetic fields can cause lasting changes to nervous system function in living organisms.

A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans.

Dawe AS et al. · 2006

Researchers studied whether microwave radiation could trigger stress responses in tiny worms without actually heating them up. They discovered that what initially appeared to be a non-thermal biological effect was actually caused by tiny temperature increases (less than 0.2°C) in their experimental setup. When they improved their equipment to eliminate this slight heating, the biological effects disappeared entirely.

Browse by Health Effect