3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

Does Exposure to a Radiofrequency Electromagnetic Field Modify Thermal Preference in Juvenile Rats?

Pelletier A et al. · 2014

Researchers exposed young rats to cell phone-frequency radiation (900 MHz) for five weeks and found the animals developed altered sleep patterns and temperature preferences. The exposed rats slept 15.5% longer, preferred warmer environments, and had cooler tail temperatures, suggesting the radiation disrupted their normal body temperature regulation. This provides biological evidence that radiofrequency exposure can interfere with fundamental physiological processes like sleep and thermoregulation.

Exposure of mice to 900-1900 MHz radiations from cell phone resulting in microscopic changes in the kidney

Mugunthan N, Anbalagan J, Meenachi S, Samy AS. · 2014

Researchers exposed mice to cell phone radiation (900-1900 MHz) for 48 minutes daily over six months and examined their kidneys under a microscope. The study found significant structural damage to kidney tissue, including enlarged spaces in filtering units (glomeruli) and damaged tubules that process urine. This suggests that chronic exposure to cell phone-level radiation may harm kidney function at the cellular level.

Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats

Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK · 2014

Researchers exposed male rats to WiFi-frequency radiation (2.45 GHz) for 2 hours daily over 45 days, finding significant damage to sperm production and testosterone levels. Melatonin supplements prevented most reproductive harm, suggesting microwave radiation threatens male fertility but antioxidants may offer protection.

Immunohistochemical Localization of Brain-derived Neurotrophic Factor and Glial Cell Line-derived Neurotrophic Factor in the Superior Olivary Complex of Mice after Radiofrequency Exposure.

Maskey D, Kim MJ · 2014

Researchers exposed mice to radiofrequency radiation at 1.6 W/kg (similar to cell phone levels) and examined brain proteins that protect auditory neurons. They found significant decreases in two protective proteins (BDNF and GDNF) in the superior olivary complex, a brain region crucial for hearing and sound processing. This suggests RF exposure may harm the brain's auditory system by reducing proteins that normally keep hearing neurons healthy.

Calreticulin Protects Rat Microvascular Endothelial Cells against Microwave Radiation-induced Injury by Attenuating Endoplasmic Reticulum Stress.

Li WH, Li YZ, Song DD, Wang XR, Liu M, Wu XD, Liu XH. · 2014

Researchers exposed rat blood vessel cells to microwave radiation at 2.856 GHz for six minutes and found it caused significant cell damage and death through a process called endoplasmic reticulum stress. However, when cells were pretreated with a protective protein called calreticulin, the radiation damage was substantially reduced. This suggests that microwave radiation can harm the tiny blood vessels throughout our body, but also points to potential protective mechanisms.

In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy.

Hwang Y, Ahn J, Mun J, Bae S, Jeong YU, Vinokurov NA, Kim P. · 2014

Researchers exposed mouse ear skin to terahertz (THz) radiation at 2.7 THz frequency for 30 minutes and monitored the immune response using advanced microscopy. They found that THz exposure triggered a massive inflammatory response, with immune cells called neutrophils flooding into the exposed skin area within 6 hours. Importantly, this inflammatory reaction occurred without any detectable heating of the skin, suggesting the radiation caused biological effects through non-thermal mechanisms.

Neuroprotective effects of dietary supplement Kang-fu-ling against high-power microwave through antioxidant action.

Hu S et al. · 2014

Researchers exposed rats to high-power microwave radiation for 15 minutes daily over two weeks and found it caused memory problems and brain damage. However, when they gave the rats a dietary supplement called Kang-fu-ling (KFL), it protected their brains by reducing oxidative stress (cellular damage from harmful molecules). This suggests that certain antioxidant compounds might help shield the brain from microwave radiation damage.

Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

Hou Q, Wang M, Wu S, Ma X, An G, Liu H, Xie F. · 2014

Researchers exposed mouse cells to 1800-MHz cell phone radiation at levels similar to what phones emit during calls (2 W/kg SAR). They found that even intermittent exposure for just one hour significantly increased harmful reactive oxygen species and caused more cells to die through a process called apoptosis. This demonstrates that cell phone radiation can trigger cellular stress and damage at exposure levels considered safe by current regulations.

Modifying Effects of Low-Intensity Extremely High-Frequency Electromagnetic Radiation on Content and Composition of Fatty Acids in Thymus of Mice Exposed to X-Rays.

Gapeyev AB, Aripovsky AV, Kulagina TP. · 2014

Scientists exposed mice to 42.2 GHz electromagnetic radiation to test whether it could protect against X-ray damage to immune tissue. The electromagnetic exposure helped restore normal tissue chemistry and weight in the thymus gland, suggesting certain frequencies might aid immune system recovery from radiation injury.

Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior.

Salunke BP, Umathe SN, Chavan JG. · 2014

Researchers exposed mice to 50 Hz magnetic fields from power lines for 8 hours daily up to 120 days. The mice developed obsessive-compulsive behaviors and showed increased nitric oxide levels in brain regions controlling behavior, suggesting power-frequency fields can alter brain chemistry.

Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons.

Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. · 2014

Researchers exposed newborn rat nerve cells to 50 Hz electromagnetic fields (power line frequency) for two hours. The exposure increased production of BDNF, a protein essential for nerve growth and brain health, by triggering calcium flow into cells and activating specific cellular pathways.

Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod.

Duan Y, Wang Z, Zhang H, He Y, Fan R, Cheng Y, Sun G, Sun X. · 2014

Researchers exposed mice to 50 Hz magnetic fields (the same frequency as power lines) for 28 days and found significant brain changes in the hippocampus, a region critical for memory and learning. The exposure disrupted brain chemistry by increasing glutamate levels and damaging cellular signaling pathways that are essential for proper brain function. Importantly, the study also showed that these harmful effects could be reversed with a natural antioxidant treatment.

Neuroprotective effect of weak static magnetic fields in primary neuronal cultures.

Ben Yakir-Blumkin M, Loboda Y, Schächter L, Finberg JP. · 2014

Researchers exposed rat brain neurons to weak static magnetic fields (50 gauss) for seven days and found these fields provided significant protection against cell death. The magnetic field exposure reduced neuron death by 57% when cells were exposed to a toxic chemical, and decreased multiple markers of cellular damage by 40-80%. This suggests static magnetic fields might influence brain cell survival through changes in calcium channels.

Adaptive Response in Mice Exposed to 900 MHz Radiofrequency Fields: Bleomycin-induced DNA and Oxidative Damage/Repair.

Zong C, Ji Y, He Q, Zhu S, Qin F, Tong J, Cao Y. · 2014

Researchers exposed mice to cell phone frequency radiation (900 MHz) for 4 hours daily for a week, then injected them with a DNA-damaging drug called bleomycin. They found that mice pre-exposed to the radiation showed less DNA damage from the drug and better antioxidant defenses compared to mice that received only the drug. This suggests the radiation exposure triggered protective cellular responses that helped the mice resist subsequent damage.

2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress.

Shahin S, Mishra V, Singh SP, Chaturvedi CM. · 2014

Researchers exposed male mice to 2.45 GHz microwave radiation (the same frequency used by Wi-Fi routers and microwave ovens) for 2 hours daily over 30 days at very low power levels. The exposed mice showed significant decreases in sperm count and viability, along with damaged sperm-producing tissue and reduced testosterone levels. This suggests that chronic exposure to common wireless frequencies may impair male fertility through oxidative stress mechanisms.

[Effects of nano-selenium on cognition performance of mice exposed in 1800 MHz radiofrequency fields].

Qin F, Yuan H, Nie J, Cao Y, Tong J. · 2014

Researchers exposed mice to cell phone radiation at 1800 MHz (the frequency used by GSM networks) for either 30 or 120 minutes daily over 30 days. Mice exposed for 120 minutes showed significant learning and memory problems, along with brain chemistry changes indicating oxidative stress. When researchers gave the mice nano-selenium supplements, the cognitive damage was largely prevented.

Evaluation of oxidant stress and antioxidant defense in discrete brain regions of rats exposed to 900 MHz radiation.

Narayanan SN et al. · 2014

Researchers exposed adolescent rats to cell phone radiation (900 MHz) for one hour daily over four weeks and found significant brain damage. The radiation caused oxidative stress (cellular damage from harmful molecules) in all brain regions tested, with different areas showing varying degrees of harm. The rats also displayed altered behavior, suggesting the brain damage had functional consequences.

Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats

Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. · 2014

Researchers exposed male rats to Wi-Fi frequency radiation (2.45 GHz) for 2 hours daily over 45 days, finding it damaged sperm DNA and caused oxidative stress in testicular tissue. The antioxidant melatonin prevented this damage, suggesting everyday microwave radiation may harm male fertility but antioxidants could provide protection.

The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

Liu K et al. · 2014

Chinese researchers exposed mouse sperm-producing cells to 1800 MHz cell phone radiation at various power levels for 24 hours to study cellular stress responses. They found that higher radiation levels triggered autophagy (a cellular cleanup process) and increased oxidative stress, with cells using autophagy as a protective mechanism against cell death. This suggests that even when cells don't immediately die from RF exposure, they're still activating stress-response systems to survive.

Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic.

Hatice Ş. Gürler et al. · 2014

Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for one hour daily over 30 days and measured damage to DNA and proteins in their brains. The radiation caused significant DNA damage in both brain tissue and blood, while also increasing harmful protein changes in the blood. Interestingly, rats given garlic supplements showed protection against these damaging effects.

Browse by Health Effect