3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

Induction of adaptive response in mice exposed to 900 MHz radiofrequency fields: Application of micronucleus assay

Jiang B, Zong C, Zhao H, Ji Y, Tong J, Cao Y · 2013

Researchers exposed mice to 900MHz radiofrequency radiation (similar to cell phone signals) for 4 hours daily over 7 days, then subjected them to high-dose gamma radiation. The mice pre-exposed to RF showed significantly less genetic damage from the gamma radiation compared to mice that received only gamma radiation. This suggests that low-level RF exposure may trigger protective cellular responses that help defend against more harmful radiation damage.

Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

Gapeyev AB, Kulagina TP, Aripovsky AV. · 2013

Researchers exposed mice with cancer to extremely high-frequency electromagnetic radiation (42.2 GHz) for 20 minutes daily and found it changed the fatty acid composition in their tissues. The radiation appeared to restore normal fatty acid levels in immune system cells (thymocytes) and altered the fatty acid makeup within tumor tissue itself. This suggests EMF exposure might influence cancer progression by changing how cells process fats.

Effect of 900 MHz radıofrequency radıatıon on oxıdatıve stress In rat braın and serum.

Bilgici B, Akar A, Avci B, Tuncel OK. · 2013

Researchers exposed rats to cell phone-level radiofrequency radiation (900 MHz) for one hour daily over three weeks and measured damage markers in brain tissue. The study found significant increases in two key indicators of cellular damage - lipid oxidation and protein damage - in the brain tissue of exposed animals. Interestingly, rats given garlic powder showed protection against this brain damage, suggesting antioxidants may help counteract RF radiation effects.

Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD).

Banaceur S, Banasr S, Sakly M, Abdelmelek H. · 2013

Researchers exposed mice with Alzheimer's-like symptoms to WiFi signals (2.4 GHz) for two hours daily over a month at levels similar to cell phone exposure. Surprisingly, the WiFi exposure actually improved cognitive performance and memory in the Alzheimer's mice compared to unexposed mice. This unexpected finding suggests radiofrequency radiation might have therapeutic potential for certain brain conditions, though the mechanism remains unclear.

The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain.

Aboul Ezz HS, Khadrawy YA, Ahmed NA, Radwan NM, El Bakry MM. · 2013

Researchers exposed rats to cell phone radiation (1800 MHz, similar to 2G networks) for up to 4 months and measured key brain chemicals called neurotransmitters that control mood, memory, and learning. The radiation significantly altered levels of dopamine, serotonin, and norepinephrine across four different brain regions. These chemical changes could explain why some people report memory problems, learning difficulties, and increased stress after heavy cell phone use.

Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice.

Wang X et al. · 2013

Researchers exposed adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice. This unexpected finding suggests that certain EMF exposures during development might enhance rather than harm specific brain functions, though the implications for human health remain unclear.

Extremely low frequency magnetic fields induce oxidative stress in rat brain.

Manikonda PK et al. · 2013

Researchers exposed young rats to extremely low frequency magnetic fields (the type from power lines and appliances) for 90 days and found significant oxidative stress damage in their brains. The damage was dose-dependent, meaning higher field strengths caused more harm, and affected different brain regions differently. This suggests that chronic exposure to these common magnetic fields may damage brain cells by overwhelming the body's natural antioxidant defenses.

Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic-pituitary-adrenal axis in mice.

Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. · 2013

Researchers exposed mice to extremely low-frequency magnetic fields (ELF-MF) at 3 milliTesla for 200 hours to study effects on mood and stress hormones. The exposed mice showed depression-like behaviors, increased anxiety, and elevated levels of corticosterone (a stress hormone), suggesting that chronic magnetic field exposure may affect mental health and stress response systems.

Influence of Magnetic Field on Brain Activity During Administration of Caffeine.

El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013

Researchers exposed rats to extremely low frequency magnetic fields (the type emitted by power lines and appliances) for 15 days and found these fields significantly altered brain wave patterns, particularly enhancing activity in the right hemisphere. When caffeine was given alongside the magnetic field exposure, it appeared to partially counteract some of the brain changes, especially in areas controlling movement.

The preventive effect of lotus seedpod procyanidins on cognitive impairment and oxidative damage induced by extremely low frequency electromagnetic field exposure.

Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013

Researchers exposed mice to 50 Hz magnetic fields (the type from power lines) for 28 days and found it damaged their learning, memory, and brain cells through oxidative stress. When mice were given lotus seedpod antioxidants during exposure, these harmful effects were largely prevented. This suggests that extremely low frequency EMF exposure can cause measurable brain damage, but antioxidants may offer some protection.

Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice.

Deng Y, Zhang Y, Jia S, Liu J, Liu Y, Xu W, Liu L. · 2013

Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) at 2 milliTesla for 4 hours daily over 8 weeks, testing both memory and brain chemistry. The magnetic field exposure caused significant memory impairment in maze tests and increased oxidative stress markers in the brain, similar to the damage caused by aluminum toxicity. These findings suggest that prolonged exposure to strong magnetic fields can harm brain function through oxidative damage.

Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field.

Bertolino G, Dutra Souza HC, de Araujo JE. · 2013

Researchers exposed rats with chemically-induced brain damage (mimicking Parkinson's disease) to static magnetic fields of 3200 gauss for 14 days. The magnetic field exposure helped preserve neurons in the brain region affected by Parkinson's and improved motor function compared to rats that didn't receive magnetic treatment. This suggests static magnetic fields might have therapeutic potential for protecting brain cells from neurodegenerative damage.

Changes in synaptic efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early postnatal age.

Balassa T et al. · 2013

Researchers exposed developing rats to 50 Hz magnetic fields (the same frequency as power lines) during critical brain development periods and found lasting changes in brain function. The exposed animals showed altered electrical activity in brain regions responsible for learning and memory, with some changes persisting weeks after exposure ended. This suggests that magnetic field exposure during early development may affect how the brain processes information later in life.

Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons.

Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013

Researchers exposed rat bone marrow stem cells to 50 Hz electromagnetic fields (the same frequency as household electricity) for one hour daily over 12 days. The EMF exposure significantly enhanced the stem cells' ability to transform into functional brain neurons, complete with working synapses and electrical activity. This suggests that power frequency magnetic fields can directly influence cellular development and may have therapeutic applications for treating nervous system diseases.

2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus.

Shahin S et al. · 2013

Researchers exposed female mice to 2.45 GHz microwave radiation (the same frequency as WiFi and microwave ovens) for 2 hours daily over 45 days at very low power levels. The exposed mice showed significantly reduced implantation sites for embryos, along with increased DNA damage in brain cells, elevated stress markers in blood, and disrupted hormone levels. This suggests that even low-level microwave radiation can interfere with reproduction and pregnancy through oxidative stress mechanisms.

Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z. · 2013

Researchers exposed mouse sperm cells to cell phone radiation (1800 MHz) for 24 hours and found that at higher exposure levels (4 W/kg SAR), the radiation caused oxidative DNA damage - essentially cellular rust that can harm genetic material. The damage occurred through reactive oxygen species (free radicals) rather than direct energy breaks, and could be prevented with antioxidants like vitamin E.

The effect of prenatal exposure to 900-MHz electromagnetic field on the 21-old-day rat testicle.

Hancı H et al. · 2013

Researchers exposed pregnant rats to cell phone-level radiation (900 MHz) for one hour daily during late pregnancy, then examined the testicles of their male offspring at 21 days old. The exposed offspring showed significant damage to their developing reproductive organs, including structural abnormalities, increased cell death, and DNA damage that persisted weeks after birth. This suggests that EMF exposure during pregnancy may harm the reproductive development of male offspring.

Effect of 900 MHz radıofrequency radıatıon on oxıdatıve stress in rat brain and serum

Bilgici B, Akar A, Avci B, Tuncel OK · 2013

Researchers exposed rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over three weeks at levels similar to what humans experience. They found significant increases in oxidative stress markers in the brain, indicating cellular damage from free radicals. Interestingly, rats given garlic powder showed protection against this brain damage, suggesting antioxidants may help counteract RF radiation effects.

Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices

Atasoy HI, Gunal MY, Atasoy P, Elgun S, Bugdayci G · 2013

Researchers exposed young male rats to Wi-Fi radiation (2.4 GHz) 24 hours a day for 20 weeks and found significant DNA damage in their reproductive organs. The Wi-Fi exposure caused increased markers of genetic damage and reduced the activity of protective enzymes that normally defend against cellular harm. These findings suggest that chronic Wi-Fi exposure during development may threaten reproductive health and fertility.

Effect of a static magnetic fields and fluoride ions on the antioxidant defense system of mice fibroblasts.

Kurzeja E et al. · 2013

Researchers exposed mouse cells to static magnetic fields while also treating them with fluoride (a known toxic substance). They found that magnetic field exposure actually helped protect the cells from fluoride damage by reducing oxidative stress and normalizing antioxidant enzymes. The magnetic fields appeared to improve cellular energy production and reduce harmful cellular byproducts.

Influence of extremely low-frequency magnetic field on the activity of antioxidant enzymes during skin wound healing in rats

Glinka M, Sieroń A, Birkner E, Cieślar G · 2013

Researchers exposed rats with skin wounds to 40 Hz magnetic fields at 10 mT (millitesla) to see if it would help healing. They found the magnetic field exposure increased antioxidant enzyme activity and reduced cellular damage markers, suggesting the treatment helped protect cells from harmful oxidative stress during the wound healing process.

Browse by Health Effect