Manikonda PK et al. · 2007
Researchers exposed young rats to 50 Hz magnetic fields (the same frequency used in power lines) for 90 days and found significant changes in brain chemistry, specifically disrupted calcium signaling in the hippocampus, the brain region critical for memory and learning. The magnetic field exposure altered the activity of key enzymes and reduced the function of NMDA receptors, which are essential for memory formation. These findings suggest that chronic exposure to extremely low frequency magnetic fields may interfere with normal brain function and memory processes.
Jadidi M et al. · 2007
Researchers exposed rats to 50 Hz magnetic fields (power line frequency) for 20 minutes after they learned a memory task. High-intensity exposure (8 milliTesla) impaired their ability to remember the task 48 hours later, suggesting magnetic fields can disrupt how the brain stores new memories.
Hung CS, Anderson C, Horne JA, McEvoy P. · 2007
Researchers exposed sleep-deprived people to mobile phone signals for 30 minutes, then monitored their brain waves during sleep. Active phone transmissions during "talk mode" significantly delayed deep sleep onset compared to other phone modes, suggesting cell phone use can disrupt natural sleep patterns.
Del Giudice E et al. · 2007
Researchers exposed human brain cells to 50 Hz magnetic fields from power lines and found they produced more amyloid-beta, the toxic proteins that build up in Alzheimer's disease. This laboratory study suggests electromagnetic field exposure might contribute to brain changes associated with Alzheimer's.
Che Y, Sun H, Cui Y, Zhou D, Ma Y. · 2007
Researchers exposed young chickens to power line magnetic fields for either 20 hours or 50 minutes daily, then tested their learning ability. Chicks with prolonged exposure showed significant learning problems, while brief exposure caused no harm, suggesting extended magnetic field exposure may impair brain function.
Carrubba S, Frilot C, Chesson AL, Marino AA. · 2007
Researchers exposed eight people to weak 60 Hz magnetic fields from power lines for two seconds and measured brain activity. The brain consistently responded to these brief exposures in complex ways that standard tests couldn't detect, suggesting humans may be more sensitive to electromagnetic fields than previously recognized.
Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. · 2007
Researchers exposed rat brain cells to cell phone radiation (1800 MHz) for 24 hours and found 34 genes changed their activity levels, affecting cell structure and function. This shows mobile phone radiation can alter how genes work in brain cells.
Regel SJ et al. · 2007
Swiss researchers exposed 15 men to cell phone-like radiation at different intensities for 30 minutes before sleep, then monitored their brain activity and cognitive performance. They found that stronger radiation caused measurable changes in brain wave patterns during sleep and slowed reaction times on memory tasks. This demonstrates a dose-response relationship, meaning higher radiation exposure produces more pronounced effects on brain function.
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007
Researchers exposed developing rat brain cells to cell phone radiation and found that higher exposure levels (2.4 W/kg) significantly reduced the formation of dendritic spines, which are essential for brain cell communication, suggesting potential interference with normal brain development during critical growth periods.
Meral I et al. · 2007
Researchers exposed guinea pigs to cell phone radiation for 12 hours daily over 30 days and measured brain tissue damage. They found increased oxidative stress (cellular damage from free radicals) in the brain, with higher levels of harmful compounds and lower levels of protective antioxidants. This suggests that prolonged cell phone radiation exposure may damage brain cells through oxidative stress mechanisms.
Kumlin T et al. · 2007
Finnish researchers exposed young rats to cell phone radiation (900 MHz) for 2 hours daily over 5 weeks. Unexpectedly, exposed rats showed improved learning and memory performance with no brain damage or blood-brain barrier problems, suggesting cognitive enhancement that warrants further investigation.
Hung CS, Anderson C, Horne JA, McEvoy P · 2007
Researchers exposed 10 healthy young adults to different mobile phone signal modes for 30 minutes, then measured how long it took them to fall asleep. They found that exposure to 'talk mode' signals significantly delayed sleep onset compared to listening mode or no signal exposure. The study suggests that the specific signal patterns phones emit during calls may interfere with the brain's natural transition to sleep.
Brillaud E, Piotrowski A, de Seze R · 2007
French researchers exposed rats to 15 minutes of cell phone radiation and found brain inflammation that peaked after 2 days and lasted up to 10 days. The study measured stress proteins in brain tissue, suggesting brief phone exposure can trigger inflammatory responses in the brain.
Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. · 2007
Chinese researchers exposed rat brain neurons to cell phone-frequency radiation (1800 MHz) for 24 hours at power levels similar to heavy phone use. They found that 34 genes changed their activity levels, affecting how neurons function in areas like cell structure, communication, and metabolism. This demonstrates that radiofrequency radiation can alter the fundamental genetic programming of brain cells.
Buttiglione M et al. · 2007
Researchers exposed human brain cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) at power levels similar to what your phone emits. They found that this radiation activated stress response genes, disrupted normal cell division, and triggered cell death pathways. The effects occurred at radiation levels considered 'safe' by current standards, suggesting that RF exposure may interfere with fundamental cellular processes in brain tissue.
Takebayashi T et al. · 2006
Japanese researchers studied 101 people with acoustic neuromas (benign tumors on the nerve connecting the ear to the brain) and compared their mobile phone use to 339 healthy controls. They found no increased risk of developing these tumors among mobile phone users, even those who used phones for over 8 years or accumulated more than 900 hours of call time. The study suggests mobile phone use does not significantly increase acoustic neuroma risk in Japan.
Yuasa K et al. · 2006
Japanese researchers tested whether 30 minutes of mobile phone use affects brain activity by measuring electrical signals in the sensory cortex (the brain region that processes touch and sensation) in 12 healthy volunteers. They found no changes in brain activity after phone exposure compared to fake exposure. This suggests that short-term mobile phone use doesn't immediately alter how your brain processes sensory information.
Verschaeve et al. · 2006
Researchers exposed female rats to mobile phone radiation (900 MHz) for 2 hours daily over 2 years, while also giving them a known cancer-causing chemical in their drinking water. They wanted to see if the radiation would make the chemical's DNA damage worse. The study found no evidence that the radiofrequency radiation enhanced the genetic damage caused by the toxic chemical.
Thorlin et al. · 2006
Swedish researchers exposed brain glial cells (support cells that protect neurons) to 900 MHz radiation at various power levels for up to 24 hours to see if it would trigger inflammatory responses or cellular damage. They found no significant effects on inflammatory markers, cellular proteins, or cell structure at any exposure level tested. The study suggests that short-term exposure to 900 MHz radiation at these levels does not cause detectable damage to these important brain cells in laboratory conditions.
Terao Y, Okano T, Furubayashi T, Ugawa Y · 2006
Researchers tested whether 30 minutes of mobile phone use affects reaction time and movement speed in visual-motor tasks. In a well-designed study with 16 people, they found no differences in performance between real phone exposure and fake exposure. This suggests that short-term mobile phone use doesn't impair basic motor coordination or reaction speed.
Sukhotina I, Streckert JR, Bitz AK, Hansen VW, Lerchl A · 2006
Researchers exposed isolated hamster pineal glands (which produce melatonin, the sleep hormone) to cell phone radiation at 1800 MHz for 7 hours at various power levels. Surprisingly, they found that moderate exposure levels actually increased melatonin production, while only the highest level (which caused tissue heating) suppressed it. This challenges the widely-discussed theory that cell phone radiation disrupts sleep by reducing melatonin.
Schüz J et al. · 2006
Danish researchers followed 420,095 cell phone subscribers for up to 21 years to see if mobile phone use increased cancer risk. They found no increased risk for brain tumors, acoustic neuromas, or other cancers typically associated with phone use, even among people who used phones for 10 years or more. This large-scale study suggests that cell phone use does not significantly increase cancer risk over the long term.
Schuz J et al. · 2006
German researchers studied 747 brain tumor patients and 1,494 healthy controls to see if sleeping near DECT cordless phone base stations increases brain tumor risk. They found no increased risk of glioma or meningioma brain tumors, with odds ratios of 0.82 and 0.83 respectively (values below 1.0 suggest slightly reduced risk). This provides initial evidence that low-level radiofrequency exposure from cordless phone base stations may not increase brain tumor risk.
Schuz J et al. · 2006
German researchers studied 747 brain tumor patients and 1,494 healthy controls to examine whether cell phone and cordless phone use increases the risk of glioma and meningioma (two types of brain tumors). While they found no overall increased risk from phone use, people who used cell phones for 10 or more years showed a 2.2-fold higher risk of glioma, though this finding wasn't statistically definitive. The results suggest potential long-term risks that require further investigation.
Russo R et al. · 2006
Researchers tested 168 people on attention and cognitive tasks while exposed to mobile phone signals (both GSM and continuous wave) versus fake signals. They found no significant differences in performance on reaction time, vigilance, or mental math tasks regardless of which type of signal participants were exposed to or which side of the head the phone was positioned on.