3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

5G vs 4G Radiation: What's Different?

Based on 653 peer-reviewed studies

Share:

People often ask whether 5G is more dangerous than 4G. This question requires understanding how 5G technology differs from previous generations and what research exists on each.

5G networks operate across multiple frequency bands. Low-band 5G (600-900 MHz) is actually similar to 4G frequencies. Mid-band 5G (2.5-4 GHz) overlaps with existing WiFi. High-band 5G (24-40+ GHz, "millimeter wave") represents the newest frequencies for consumer wireless exposure.

This page compares what research shows about radiation exposure from 5G versus 4G technologies.

Key Research Findings

  • 5G uses multiple frequency bands with different characteristics
  • Millimeter waves (high-band 5G) penetrate less deeply into tissue
  • More cell towers can actually reduce individual exposure levels

Related Studies (653)

Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo - A Comparative Study.

D'Silva MH, Swer RT, Anbalagan J, Rajesh B. · 2017

Researchers exposed developing chick embryos to radiation from 2G and 3G cell phones throughout their development and examined the effects on liver tissue. They found significant structural damage to liver cells, including bleeding, cellular swelling, and DNA breaks, with 3G radiation causing more severe damage than 2G. This suggests that developing tissues may be particularly vulnerable to cell phone radiation during critical growth periods.

The response of human bacteria to static magnetic field and radiofrequency electromagnetic field.

Crabtree DPE, Herrera BJ, Kang S. · 2017

Researchers at Baylor University exposed bacteria from human skin to radiofrequency electromagnetic fields (the type emitted by cell phones) and found that these exposures altered bacterial growth patterns. The study tested both laboratory bacteria and skin bacteria samples from people with different cell phone usage histories, finding variable but consistent disruption across different bacterial species. This suggests that cell phone radiation may be disrupting the beneficial bacteria that naturally live on our skin, potentially affecting human health through this disrupted relationship.

Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM. · 2017

Researchers exposed multiple types of cancer cells to a specific low-frequency electromagnetic field pattern (25-6 Hz) for one hour daily and found it significantly slowed cancer cell growth without affecting healthy cells. The EMF exposure worked by altering specific cellular signaling pathways (cAMP and ERK) that control cell division. This suggests certain EMF patterns might have therapeutic potential for cancer treatment by selectively targeting malignant cells.

Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations.

Zothansiama, Zosangzuali M, Lalramdinpuii M, Jagetia GC. · 2017

Researchers studied 40 people living within 80 meters of cell phone towers and compared them to controls living 300 meters away. They found that those closer to towers had significantly more DNA damage in their blood cells and reduced levels of protective antioxidants like glutathione, catalase, and superoxide dismutase. This suggests that chronic exposure to radiofrequency radiation from cell towers may compromise the body's natural defenses against cellular damage.

Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3.

Varghese R, Majumdar A, Kumar G, Shukla A. · 2017

Researchers exposed female rats to WiFi-frequency radiation (2.45GHz) for 4 hours daily over 45 days and found significant brain changes including memory problems, increased anxiety, and markers of brain cell death. The radiation also damaged the brain's natural antioxidant defenses and altered the structure of neurons that carry electrical signals. This study suggests that prolonged exposure to WiFi radiation at the frequency used by most wireless devices may harm brain function and structure.

Adaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity.

Mortazavi SMJ et al. · 2017

Researchers exposed 50 rats to 915 MHz radiofrequency radiation (similar to microwave ovens) at different power levels for 4 hours daily over one week, then tested whether this 'primed' their livers to better handle radiation damage. They found that low-power RF exposure increased protective antioxidant enzymes in the liver, creating an 'adaptive response' that helped protect against subsequent high-dose gamma radiation damage.

Effects of radiofrequency field exposure on glutamate-induced oxidative stress in mouse hippocampal HT22 cells.

Kim JY, Kim HJ, Kim N, Kwon JH, Park MJ. · 2017

Researchers exposed mouse brain cells to radiofrequency radiation while also treating them with glutamate, a chemical that causes oxidative stress similar to what happens in Alzheimer's disease. They found that RF exposure alone didn't harm the cells much, but when combined with glutamate, it significantly increased cell death and toxic free radical production. This suggests RF radiation may worsen brain damage in conditions where the brain is already under stress.

Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

Gökçek-Saraç Ç et al. · 2017

Turkish researchers exposed rats to cell phone frequencies (900 MHz and 2100 MHz) for either one week or ten weeks and measured changes in brain enzymes involved in memory and learning. They found that longer exposure caused greater disruption to these critical brain pathways, and that the higher frequency (2100 MHz, used in 3G networks) caused more damage than the lower frequency (900 MHz, used in 2G networks).

Enhancement of X-ray Induced Apoptosis by Mobile Phone-Like Radio-Frequency Electromagnetic Fields in Mouse Spermatocyte-Derived Cells.

Zhang KY et al. · 2017

Researchers exposed mouse sperm-producing cells to cell phone radiation (1950 MHz) at 3 W/kg for 24 hours, both alone and combined with X-ray radiation. While the RF radiation alone caused no harm, when combined with X-rays it significantly increased cell death and reduced cell growth compared to X-rays alone. This suggests that cell phone radiation may make cells more vulnerable to other forms of radiation damage.

Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice.

Wang K et al. · 2017

Researchers exposed mice to 1.8 GHz radiofrequency radiation (similar to cell phone signals) for 30 minutes and found it actually improved their memory performance on recognition tasks. The radiation changed brain cell structure and electrical activity in memory-related brain regions. However, the exposure level used was much higher than what people typically experience from everyday devices.

Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields.

Sun Y, Zong L, Gao Z, Zhu S, Tong J, Cao Y · 2017

Researchers exposed human blood cells to 900MHz radiofrequency radiation (the same frequency used in many cell phones) for 4 hours daily over 5 days. The radiation caused significant damage to mitochondrial DNA (the genetic material in cellular powerhouses) and increased harmful free radicals, while reducing the cells' ability to produce energy. Importantly, treating the cells with melatonin, a natural antioxidant, prevented this damage.

Effects of GSM and UMTS mobile telephony signals on neuron degeneration and blood-brain barrier permeation in the rat brain.

Poulletier de Gannes F et al. · 2017

French researchers exposed rats to cell phone radiation (GSM and UMTS signals) for 4 weeks and found that high exposure levels caused the blood-brain barrier to leak 50 days after exposure ended. The blood-brain barrier normally protects the brain from harmful substances in the blood, but this protective shield became compromised at radiation levels equivalent to what humans might experience with very high cell phone use.

Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field.

Kim JH, Kim HJ, Yu DH, Kweon HS, Huh YH, Kim HR. · 2017

Korean researchers exposed mice to cell phone-frequency radiation (835 MHz) for 5 hours daily and examined changes in brain cells. They found that this exposure significantly reduced the number of synaptic vesicles (tiny containers that store brain chemicals) and decreased levels of proteins needed for proper brain communication. These changes suggest that radiofrequency radiation may disrupt how brain cells communicate with each other.

Effects of exposure to electromagnetic field from 915 MHz radiofrequency identification system on circulating blood cells in the healthy adult rat.

Kim HS et al. · 2017

Researchers exposed rats to 915 MHz radiofrequency radiation (used in RFID systems) for 8 hours daily over 2 weeks. They found measurable changes in blood cell counts - red blood cells increased while white blood cells decreased, demonstrating RF radiation can alter blood composition at moderate exposure levels.

Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines.

Al-Serori H et al. · 2017

Austrian researchers exposed human brain tumor cells to UMTS cell phone radiation for 16 hours at levels reflecting real-world phone use (SAR levels of 0.25 to 1.0 W/kg). They found no evidence of DNA damage or chromosomal abnormalities, though the highest exposure level triggered programmed cell death in one type of brain cancer cell. This study suggests UMTS phone signals may not directly damage genetic material in brain cells.

Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity.

Höytö A, Herrala M, Luukkonen J, Juutilainen J, Naarala J. · 2017

Finnish researchers exposed human brain cells to 50 Hz magnetic fields from power lines for 24 hours. The fields increased harmful superoxide molecules in cells and enhanced DNA damage when combined with blue light, showing magnetic fields can affect cells independently of light exposure.

Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice

Kim JH, Yu DH, Huh YH, Lee EH, Kim HG, Kim HR. · 2017

Researchers exposed mice to cell phone-level radiation (835 MHz) for 5 hours daily over 12 weeks and found significant brain changes. The radiation damaged the protective coating around brain cells (called myelin) and caused hyperactive behavior in the mice. This suggests that prolonged exposure to radiofrequency radiation at levels similar to heavy cell phone use may harm brain function and behavior.

Cancer & TumorsNo Effects Found

Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

Silva V et al. · 2016

Researchers exposed human thyroid cells from surgical patients to cell phone-like radiofrequency radiation and tested for cancer-related changes. They found no effects on cell growth markers, DNA damage indicators, or stress proteins that typically signal cellular harm. The study suggests that under these specific conditions, cell phone radiation did not trigger cancer-promoting changes in thyroid cells.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.