3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Cell Phone Radiation Research

RF Radiation

Research on electromagnetic radiation from mobile phones, including 2G, 3G, 4G LTE, and 5G NR signals.

1,326
Studies
73%
Showed Bioeffects
1
EMF Type
700 MHz - 2.7 GHz
Frequency

Related Studies (1,326)

The effects of long-term exposure of magnetic field via 900-MHz GSM radiation on some biochemical parameters and brain histology in rats.

Celikozlu SD et al. · 2012

Researchers exposed rats to 900-MHz cell phone radiation (30 minutes daily from before birth to 80 days old) and found significant brain damage in the cortex region. The radiation caused a 51% decrease in healthy brain cells (pyramidal neurons) and a 73% increase in damaged brain cells (ischemic neurons), while also elevating blood glucose and protein levels.

Microwave electromagnetic field regulates gene expression in T-lymphoblastoid leukemia CCRF-CEM cell line exposed to 900 MHz.

Trivino Pardo JC, Grimaldi S, Taranta M, Naldi I, Cinti C. · 2012

Italian researchers exposed leukemia cells to 900 MHz microwave radiation (the same frequency used by many cell phones) and found that it altered gene expression patterns within the cells. The study identified specific biological pathways that were disrupted by the electromagnetic field exposure. This suggests that cell phone frequency radiation can trigger measurable changes at the genetic level in cancer cells.

The toxic effects of mobile phone radiofrequency (940MHz) on the structure of calf thymus DNA.

Hekmat A, Saboury AA, Moosavi-Movahedi AA. · 2012

Researchers exposed DNA samples to mobile phone radiation (940 MHz) and found that the radiation caused permanent structural changes to the DNA molecules. The DNA became less stable, changed shape, and showed signs of damage that persisted even two hours after exposure ended. This suggests that radiofrequency radiation from mobile phones can directly alter DNA structure at the molecular level.

Effects of radiofrequency radiation on human ferritin: an in vitro enzymun assay.

Fattahi-Asl J et al. · 2012

Researchers exposed human blood serum samples to cell phone radiation at 900 MHz for 30 minutes and found that ferritin levels (a protein that stores iron in the body) decreased significantly compared to unexposed samples. The exposed samples showed ferritin levels drop from 87.25 to 84.94 micrograms per liter, a statistically significant 2.6% reduction. This suggests that cell phone radiation may interfere with iron storage proteins in blood, potentially affecting how our bodies manage iron metabolism.

Brain & Nervous SystemNo Effects Found

No effects of short‐term GSM mobile phone radiation on cerebral blood flow measured using positron emission tomography

Kwon MS et al. · 2012

Finnish researchers used advanced brain imaging (PET scans) to measure blood flow in the brains of 15 healthy men while they were exposed to cell phone radiation at 902.4 MHz for 5 minutes. The study found no changes in brain blood flow patterns, even though the radiation did cause a slight temperature increase in the ear canals. This suggests that short-term cell phone exposure doesn't immediately alter how blood circulates through the brain.

Brain & Nervous SystemNo Effects Found

No effects of short-term GSM mobile phone radiation on cerebral blood flow measured using positron emission tomography.

Kwon MS et al. · 2012

Finnish researchers used advanced brain imaging (PET scans) to measure blood flow in the brains of 15 men while they were exposed to cell phone radiation for 5 minutes from different positions around their heads. The study found no changes in brain blood flow despite the radiation causing a slight temperature increase in the ear canals, suggesting that short-term cell phone exposure doesn't immediately affect how blood circulates in the brain.

A 1.8-GHz radiofrequency radiation induces EGF receptor clustering and phosphorylation in cultured human amniotic (FL) cells. Int J Radiat Biol. 88(3):239-244, 2012.

Sun W, Shen X, Lu D, Fu Y, Lu D, Chiang H · 2012

Cell phone radiation (1.8 GHz) activated growth receptors in human cells after just 15 minutes of exposure. The effects occurred at radiation levels of 0.5 W/kg and higher but not at 0.1 W/kg, showing radiofrequency radiation can directly trigger cellular responses that control cell growth and communication.

DNA & Genetic DamageNo Effects Found

900 MHz radiation does not induce micronucleus formation in different cell types.

Hintzsche H et al. · 2012

German researchers exposed human cells to 900 MHz radiation (the frequency used in mobile phones) to see if it would cause micronucleus formation, a type of genetic damage where chromosomes break apart during cell division. They tested two different cell types and found no genetic damage even after extending exposure times to match a full cell cycle. This suggests that mobile phone radiation at this frequency does not cause this particular type of DNA damage in laboratory conditions.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia.

Nittby H et al. · 2012

Swedish researchers exposed land snails to cell phone radiation at 1900 MHz (the same frequency used by many mobile phones) for one hour, then tested their response to painful heat. The radiation-exposed snails showed significantly reduced sensitivity to pain compared to unexposed snails, suggesting the electromagnetic fields had an anesthetic-like effect on their nervous systems.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia

Nittby H et al. · 2012

Researchers exposed land snails to cell phone radiation at 1900 MHz for one hour and tested their response to heat-induced pain. The exposed snails showed reduced sensitivity to thermal pain compared to unexposed controls, suggesting the radiofrequency radiation acted as a pain reliever. This finding indicates that non-thermal levels of cell phone radiation can alter nervous system responses in living organisms.

Suppressive effect of electromagnetic field on analgesic activity of tramadol in rats.

Bodera P et al. · 2012

Polish researchers exposed rats to cell phone frequency radiation (1800 MHz) and found it interfered with tramadol, a common painkiller used for moderate to severe pain. The electromagnetic fields didn't change pain levels on their own, but they significantly reduced the effectiveness of the pain medication 30 minutes after injection. This suggests that EMF exposure from devices like cell phones might interfere with how our bodies process certain medications.

SAR / Device AbsorptionNo Effects Found

Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

Yu D, Zhang R, Liu Q. · 2012

Researchers used computer modeling to study how metal dental work affects radiation absorption from cell phones held against the head. They found that certain types of metal dental crowns can more than double the amount of electromagnetic energy absorbed in nearby tissues when positioned parallel to the phone's antenna. Despite this significant increase, the radiation levels remained within current safety limits set by international health organizations.

Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

Ruan P, Yong J, Shen H, Zheng X · 2012

Researchers exposed human red blood cells to cell phone-frequency radiation (900 MHz) at different power levels. Low-power exposure caused no changes, but higher power levels significantly altered cell shape, size, and hemoglobin properties, suggesting EMF exposure above certain thresholds can damage blood cells.

Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice

Aldad TS, Gan G, Gao XB, Taylor HS · 2012

Researchers exposed pregnant mice to radiofrequency radiation from cell phones (at levels similar to human exposure) throughout pregnancy and then tested the offspring's behavior and brain function. The exposed mice showed hyperactivity and memory problems as adults, along with measurable changes in brain cell communication in the prefrontal cortex. This study provides the first direct experimental evidence that prenatal cell phone radiation exposure can alter brain development and behavior.

Suppressive effect of electromagnetic field on analgesic activity of tramadol in rats

Bodera P et al. · 2012

Polish researchers exposed rats to cell phone-frequency electromagnetic fields (1500 MHz and 1800 MHz) for 15 minutes and tested how well the painkiller tramadol worked afterward. While the EMF exposure alone didn't change pain sensitivity, it significantly reduced tramadol's pain-relieving effects when the two were combined. This suggests that EMF exposure from devices like cell phones might interfere with how certain medications work in the body.

Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats

Bouji M, Lecomte A, Hode Y, de Seze R, Villégier AS · 2012

French researchers exposed young and middle-aged rats to 15 minutes of cell phone radiation (900 MHz) at high levels to study brain and stress responses. They found that middle-aged rats showed increased brain inflammation and enhanced emotional memory, while young rats had elevated stress hormone levels. The study reveals that age affects how the brain responds to radiofrequency exposure, with different vulnerabilities at different life stages.

Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves

Calabrò E et al. · 2012

Italian researchers exposed human brain cells to cell phone radiation at 1800 MHz for 2-4 hours and measured stress protein responses. They found that the radiation triggered cellular stress responses in the neurons, specifically decreasing one protective protein (Hsp20) and increasing another (Hsp70) after longer exposure. This suggests that cell phone radiation can activate stress pathways in brain cells even at levels considered safe by current standards.

Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure

Lu Y et al. · 2012

Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used by WiFi and microwave ovens) for 3 hours daily over 30 days at very low power levels. The radiation caused significant memory and learning problems, and the rats' brain cells had trouble absorbing glucose, which is essential for brain function. However, when researchers gave the rats extra glucose, it reversed the memory problems.

Calcium-binding proteins and GFAP immunoreactivity alterations in murine hippocampus after 1 month of exposure to 835 MHz radiofrequency at SAR values of 1.6 and 4.0 W/kg

Maskey D, Kim HJ, Kim HG, Kim MJ. · 2012

Researchers exposed mice to cell phone-level radiofrequency radiation (835 MHz) for one month at power levels similar to what phones emit during calls. They found significant damage to brain cells in the hippocampus, the brain region critical for memory and learning, including loss of protective proteins and signs of brain injury that worsened at higher exposure levels.

FAQs: Cell Phones EMF Research

Of 1,326 peer-reviewed studies examining cell phones electromagnetic radiation, 73% found measurable biological effects. These studies span decades of research conducted by scientists worldwide and include both laboratory experiments and epidemiological studies examining the health effects of cell phones radiation exposure.
The BioInitiative Report database includes 1,326 peer-reviewed studies specifically examining cell phones electromagnetic radiation and its potential health effects. These studies have been conducted by researchers worldwide and published in scientific journals. The research examines various biological endpoints including cellular effects, neurological impacts, reproductive health, and other health outcomes.
73% of the 1,326 studies examining cell phones electromagnetic radiation found measurable biological effects. This means that 968 studies documented observable changes when organisms were exposed to cell phones EMF. The remaining studies either found no significant effects or had inconclusive results.