3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Whole Home EMF Research

ELF MagneticELF ElectricRF

Research on EMF throughout the home - electrical wiring, smart home hubs, and WiFi coverage.

5
Sources
2,549
Studies
3
EMF Types

Related Studies (1,669)

Kinetic study on the effects of extremely low frequency electromagnetic field on catalase, cytochrome P450 and inducible nitric oxide synthase in human HaCaT and THP-1 cell lines.

Patruno A et al. · 2011

Researchers exposed human skin and immune cells to 50 Hz electromagnetic fields for 25 hours. The EMFs altered three key enzymes that protect cells from damage and control inflammation. These findings reveal new ways EMFs interact with cellular repair systems, potentially affecting wound healing and neurodegenerative diseases.

Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn chicken embryos

Lahijani MS, Bigdeli MR, Kalantary S. · 2011

Researchers exposed chicken eggs to 50 Hz electromagnetic fields (like those from power lines) for 24 hours before incubation, then examined the developing embryos' brains after 14 days. The exposed embryos showed significant brain damage, including increased cell death (apoptosis) and tissue degeneration. This study demonstrates that even brief pre-development exposure to common electromagnetic frequencies can cause measurable harm to the developing nervous system.

Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white Leghorn chicken embryos.

Lahijani MS, Bigdeli MR, Kalantary S. · 2011

Researchers exposed chicken embryos to magnetic fields similar to power lines before incubation and studied their brain development for 14 days. The exposed embryos showed significant brain damage including increased cell death and tissue breakdown compared to unexposed controls. This suggests that magnetic field exposure during critical development periods can harm the developing nervous system.

Analysis of three-dimensional SAR distributions emitted by mobile phones in an epidemiological perspective.

Deltour I et al. · 2011

Researchers analyzed how mobile phone radiation (SAR) spreads through the head using 120 different phones across multiple frequency bands (800-1800 MHz). They found that phones with similar external features don't necessarily produce similar radiation patterns in the brain, making it difficult to predict exposure levels based on phone appearance alone. This research was conducted to help improve large-scale health studies like Interphone that investigate links between mobile phone use and brain cancer.

Exposure assessment in front of a multi-band base station antenna.

Kos B, Valič B, Kotnik T, Gajšek P. · 2011

Researchers used computer modeling to study how radiofrequency radiation from cell tower antennas affects the human body at different distances. They found that higher frequency signals (like those used for 3G networks) create more concentrated energy absorption in body tissues, while lower frequencies spread their effects more evenly throughout the body. The study shows that workers standing very close to these antennas face different exposure risks than those further away.

Radio FrequencyNo Effects Found

Assessment of radiofrequency power density distribution around GSM and broadcast antenna masts in Lagos City

Ibitoye ZA, Aweda AM. · 2011

Nigerian researchers measured radiofrequency radiation levels around cell phone towers and broadcast antennas in Lagos City to assess public safety. They found power density levels ranging from 0.219 to 302.4 milliwatts per square meter, which were 20 to 50 times below international safety limits set by ICNIRP and IEEE. The study concluded that people staying at least 6 meters away from these antennas face minimal health risks from RF exposure.

Volume-averaged SAR in adult and child head models when using mobile phones: a computational study with detailed CAD-based models of commercial mobile phones.

Keshvari J, Heikkilä T. · 2011

Researchers used detailed computer models of real Nokia phones to compare how much radiofrequency energy (SAR) is absorbed by children's versus adults' heads during phone calls. They found no systematic differences between child and adult SAR levels when using the same phone model, but discovered that the specific phone design and antenna structure are the most important factors determining energy absorption patterns.

CardiovascularNo Effects Found

Effects of RF fields emitted from smart phones on cardio-respiratory parameters: a preliminary provocation study.

Kwon MK, Nam KC, Lee da S, Jang KH, Kim DW. · 2011

Researchers exposed 20 people (10 who claimed electromagnetic hypersensitivity and 10 who didn't) to smartphone radiofrequency radiation at 1950 MHz for 30 minutes in a controlled, double-blind study. They monitored heart and breathing patterns during exposure but found no measurable changes in either group. This suggests that short-term smartphone RF exposure at typical levels doesn't immediately affect basic cardiovascular or respiratory functions.

Electromagnetic energy absorption patterns in subjects with common visual disorders.

Gasmelseed A. · 2011

Researchers modeled how electromagnetic radiation from cell phones and WiFi (at 900, 1800, and 2450 MHz) is absorbed differently by eyes with common vision problems like nearsightedness and farsightedness. They found that the structural differences in these eyes create more complex patterns of energy absorption compared to normal eyes. This suggests people with vision disorders may experience different levels of electromagnetic exposure to their eye tissues.

Effect of electromagnetic radiofrequency radiation on the rats' brain, liver and kidney cells measured by comet assay.

Trosić I et al. · 2011

Researchers exposed rats to cell phone radiation (915 MHz) for one hour daily over two weeks and measured DNA damage in brain, liver, and kidney cells using the comet assay. They found measurable DNA breaks in liver and kidney cells, with slight increases in brain cells compared to unexposed control animals. This suggests that repeated exposure to cell phone-type radiation can cause genetic damage at the cellular level.

A study of neurotoxic biomarkers, c-fos and GFAP after acute exposure to GSM radiation at 900 MHz in the picrotoxin model of rat brains

Carballo-Quintás M et al. · 2011

Researchers exposed rats to cell phone-level 900 MHz radiation for 2 hours, then gave them a seizure-inducing drug called picrotoxin. They found that the combination of radiation and the drug caused significantly more brain cell activation and inflammatory responses than either exposure alone. This suggests that EMF radiation may make the brain more vulnerable to other toxic substances.

Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit?

Dragicevic N et al. · 2011

Researchers exposed mice to 918 MHz electromagnetic fields daily for one month. The treatment dramatically boosted brain cell energy production by 50-150% in Alzheimer's mice and improved function in normal mice, suggesting EMFs might protect against cognitive decline.

Mobile phone-induced honeybee worker piping

Favre D · 2011

Researchers placed active mobile phones near honeybee colonies and recorded the bees' sounds to see if cell phone radiation affected their behavior. They found that phones operating at 900 MHz caused bees to produce 'worker piping' signals, which normally indicate either preparation for swarming or that the colony is under stress. This suggests that cell phone radiation can disrupt normal bee communication and behavior patterns.

Variations in amino acid neurotransmitters in some brain areas of adult and young male albino rats due to exposure to mobile phone radiation.

Noor NA, Mohammed HS, Ahmed NA, Radwan NM · 2011

Researchers exposed rats to 900 MHz cell phone radiation daily and found significant disruptions in brain neurotransmitters (chemical messengers between brain cells). Both adult and young animals showed altered brain chemistry patterns across multiple brain regions, potentially explaining neurological symptoms some people experience from mobile phone use.

Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in the mid-infrared region.

Calabrò E, Condello S, Magazù S, Ientile, R. · 2011

Italian researchers exposed human brain cells to 50 Hz magnetic fields (like power lines) for three hours and found cellular damage including membrane changes, potential DNA harm, and protein breakdown indicating cell death, providing evidence that power-frequency fields can damage neural cells.

Effects of extremely low frequency magnetic field on oxidative balance in brain of rats.

Ciejka E, Kleniewska P, Skibska B, Goraca A. · 2011

Polish researchers exposed rats to 7 milliTesla magnetic fields at 40 Hz (similar to some therapeutic magnetic devices) for either 30 or 60 minutes daily over 10 days. They found that 30-minute exposures increased oxidative stress markers in brain tissue, indicating cellular damage from free radicals. However, 60-minute exposures triggered adaptive mechanisms that appeared to protect against this damage, suggesting the brain can develop tolerance to longer magnetic field exposures.

Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats.

He LH, Shi HM, Liu TT, Xu YC, Ye KP, Wang S. · 2011

Researchers exposed adult rats to 50 Hz magnetic fields (the same frequency as power lines) for either 1 or 4 hours daily over 4 weeks. Rats exposed for 4 hours showed increased anxiety-like behaviors but surprisingly improved spatial learning and long-term memory. This suggests that chronic exposure to power frequency magnetic fields can alter brain function in complex ways, affecting both emotional and cognitive processes.

Exposure to extremely low frequency magnetic fields induces fos-related antigen-immunoreactivity via activation of dopaminergic D1 receptor.

Shin EJ, Nguyen XK, Nguyen TT, Pham DT, Kim HC. · 2011

Researchers exposed mice to magnetic fields from power lines for one hour daily over two weeks. The exposure caused hyperactivity and altered brain chemistry in areas controlling movement and reward, with changes lasting up to a year, suggesting these fields can permanently affect brain function.

Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats.

He LH, Shi HM, Liu TT, Xu YC, Ye KP, Wang S. · 2011

Researchers exposed adult rats to 50-Hz magnetic fields (the same frequency as power lines) for either 1 or 4 hours daily over 4 weeks. They found that rats exposed for 4 hours showed increased anxiety-like behaviors but also improved spatial learning and long-term memory. This suggests that extremely low frequency magnetic fields can affect both emotional and cognitive brain functions, even at relatively short daily exposure periods.

FAQs: EMF in Whole Home

The whole home environment contains several common sources of electromagnetic field exposure including electrical wiring, wifi routers, smart meters, power lines, appliances. Together, these 5 sources account for 2,549 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 2,549 peer-reviewed studies in our database examining EMF sources commonly found in whole home environments. These studies cover 5 different EMF sources: Electrical Wiring (411 studies), WiFi Routers (302 studies), Smart Meters (1,014 studies), Power Lines (411 studies), Appliances (411 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Smart Meters has the most research with 1,014 studies, followed by Electrical Wiring (411) and Power Lines (411). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in whole home settings.