3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Power Line EMF Research

ELF Magnetic Fields

Research on extremely low frequency (ELF) magnetic fields from high-voltage transmission lines and distribution lines.

411
Studies
87%
Showed Bioeffects
1
EMF Type
50/60
Hz

Related Studies (411)

Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats

Szemerszky R, Zelena D, Barna I, Bárdos G. · 2010

Researchers exposed rats to 50 Hz magnetic fields (the type from power lines) for either 5 days or 4-6 weeks to study stress effects. They found that long-term exposure led to depression-like behavior, elevated stress hormones, and higher blood glucose levels, while short-term exposure showed no effects. This suggests that chronic exposure to magnetic fields may act as a mild stressor that could contribute to depression and metabolic problems.

Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells.

Lee HM et al. · 2010

Researchers exposed human spinal disc cells to 60 Hz magnetic fields at 1.8 millitesla for 72 hours to see how electromagnetic fields affect cell growth. They found that the magnetic fields stimulated DNA synthesis and increased cell proliferation without causing cell damage. This suggests that specific EMF exposures might have therapeutic potential for treating degenerative disc disease by promoting healthy cell growth.

Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells.

Mannerling AC, Simkó M, Mild KH, Mattsson MO · 2010

Researchers exposed human blood cells to 50-Hz magnetic fields at household appliance levels for one hour. The exposure doubled stress protein production and increased harmful oxygen radicals by 30-40%, indicating cellular damage at magnetic field strengths commonly found near home electronics.

Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach.

Morabito C et al. · 2010

Researchers exposed muscle cells to extremely low frequency electromagnetic fields (the type from power lines and household wiring) for short periods and measured cellular stress responses. The EMFs triggered increased production of harmful reactive oxygen species, disrupted the cells' energy-producing mitochondria, and altered calcium levels that control muscle function. These changes suggest that even brief EMF exposure can disrupt fundamental cellular processes in muscle tissue.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice.

Cuccurazzu B et al. · 2010

Italian researchers exposed mice to 50 Hz electromagnetic fields (European power line frequency) for up to seven hours daily over one week. This significantly increased new brain cell growth in the hippocampus, improving long-term memory formation and suggesting potential therapeutic applications for brain regenerative medicine.

Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

Szemerszky R, Zelena D, Barna I, Bárdos G. · 2010

Researchers exposed rats to 50 Hz electromagnetic fields (household electrical frequency) for weeks and found increased blood sugar, stress hormones, and depression-like behavior compared to short-term exposure. This suggests chronic EMF exposure may act as a mild stressor affecting mood and metabolism.

Effects of low-field magnetic stimulation on brain glucose metabolism.

Volkow ND et al. · 2010

Researchers exposed 15 healthy people to pulsed magnetic fields (920 Hz) while measuring brain glucose metabolism using PET scans. They found that areas of the brain exposed to stronger electric fields showed decreased metabolic activity compared to unexposed areas. The stronger the field, the greater the reduction in brain metabolism, suggesting that electromagnetic fields can directly alter brain function.

Oxidative StressNo Effects Found

A Study on the effects of 50 Hz magnetic fields on UV-induced radical reactions in murine fibroblasts.

Markkanen A, Naarala J, Juutilainen J · 2010

Finnish researchers tested whether 50 Hz magnetic fields (the type from power lines) could amplify DNA damage from UV radiation in mouse cells. They exposed cells to magnetic fields of 100-300 microTesla during or before UV exposure and measured cellular oxidative stress. The study found no evidence that magnetic fields increased UV-induced damage, contradicting their hypothesis about how magnetic fields might affect cellular chemistry.

Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons.

Di Loreto S et al. · 2009

Researchers exposed rat brain cells to 50 Hz magnetic fields and found the exposure improved cell survival and reduced cell death. The magnetic fields also triggered protective antioxidant responses and increased production of proteins that support brain health, suggesting potential protective effects.

Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria

Reba Goodman et al. · 2009

Researchers exposed flatworms (planaria) to 60 Hz magnetic fields at 80 milliGauss for one hour twice daily during regeneration after being cut in half. The EMF-exposed worms regenerated faster than unexposed controls, with tail portions growing eyes 48 hours earlier and showing increased levels of stress proteins typically associated with healing and repair processes.

Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences.

Cook CM, Saucier DM, Thomas AW, Prato FS. · 2009

Researchers exposed 32 people to weak pulsed magnetic fields (the type generated by power lines and electrical devices) for 15 minutes while measuring their brain waves. They found that different pulse patterns altered alpha brain wave activity in the back regions of the brain within just 5 minutes of exposure. The changes persisted even after exposure ended, suggesting that these everyday magnetic fields can measurably affect brain function.

Changes in synaptic efficacy and seizure susceptibility in rat brain slices following extremely low‐frequency electromagnetic field exposure

Varró P, Szemerszky R, Bárdos G, Világi I. · 2009

Researchers exposed rat brain tissue to 50 Hz magnetic fields at levels commonly found near power lines (250-500 microtesla) and measured changes in brain cell communication. They found that direct exposure reduced normal brain signaling, while whole-body exposure increased seizure susceptibility and altered how brain cells strengthen their connections. These findings suggest that everyday electromagnetic fields from electrical infrastructure can measurably alter fundamental brain functions.

Changes in synaptic efficacy and seizure susceptibility in rat brain slices following extremely low-frequency electromagnetic field exposure.

Varró P, Szemerszky R, Bárdos G, Világi I. · 2009

Researchers exposed rat brain tissue to 50 Hz magnetic fields at power line levels. The exposure altered how brain cells communicate and increased seizure-like activity. This suggests electromagnetic fields from power infrastructure may affect brain function, though effects appeared temporary.

Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures

Cvetkovic D, Cosic I. · 2009

Researchers exposed 33 people to extremely low frequency magnetic fields at different frequencies (4-50 Hz) for 2 minutes each and measured their brain waves using EEG. They found that magnetic fields at specific frequencies could synchronize with and alter corresponding brain wave patterns, particularly in the alpha and beta frequency ranges. This suggests that magnetic fields can directly influence brain activity in measurable ways.

Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures.

Cvetkovic D, Cosic I. · 2009

Researchers exposed 33 people to extremely low frequency magnetic fields (ranging from 4 to 50 Hz) and measured their brain waves using EEG. They found that specific magnetic field frequencies could alter brain wave patterns in corresponding frequency bands - for example, 10 Hz magnetic fields changed alpha brain waves (8-12 Hz). The changes depended on timing and sequence of exposure, suggesting these fields can influence brain activity in predictable ways.

Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain.

Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. · 2009

Serbian researchers exposed rats to power line frequency magnetic fields (50 Hz) for up to seven days. The exposure significantly altered serotonin brain receptors that control mood and behavior, with effects becoming stronger over longer exposure periods. This suggests household electrical fields may impact brain chemistry.

Oxidative StressNo Effects Found

Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment.

Güler G, Türközer Z, Ozgur E, Tomruk A, Seyhan N, Karasu C · 2009

Researchers exposed guinea pigs to power line frequency electric fields (12 kV/m for 8 hours daily over 7 days) to study protein damage and whether the antioxidant N-acetyl-L-cysteine could protect against it. The study found no significant protein damage from the electric field exposure alone, though it did reduce a protein synthesis marker in the liver. The antioxidant treatment showed some effects on protein markers, suggesting it may have biological activity in this context.

Brain & Nervous SystemNo Effects Found

Effects of 50 Hz electromagnetic fields on rat cortical synaptosomes

Aldinucci C et al. · 2009

Italian researchers exposed rat brain nerve terminals (synaptosomes) to 50 Hz magnetic fields at 2 milliTesla for 2 hours to study effects on basic cellular functions. They found no changes in energy production, calcium levels, membrane function, or oxidative stress markers. This suggests that power-frequency magnetic fields at this intensity don't disrupt fundamental brain cell processes.

FAQs: Power Lines EMF Research

Of 411 peer-reviewed studies examining power lines electromagnetic radiation, 87% found measurable biological effects. These studies span decades of research conducted by scientists worldwide and include both laboratory experiments and epidemiological studies examining the health effects of power lines radiation exposure.
The BioInitiative Report database includes 411 peer-reviewed studies specifically examining power lines electromagnetic radiation and its potential health effects. These studies have been conducted by researchers worldwide and published in scientific journals. The research examines various biological endpoints including cellular effects, neurological impacts, reproductive health, and other health outcomes.
87% of the 411 studies examining power lines electromagnetic radiation found measurable biological effects. This means that 358 studies documented observable changes when organisms were exposed to power lines EMF. The remaining studies either found no significant effects or had inconclusive results.