3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 274 studies in Immune System

DNA & Genetic DamageNo Effects Found

935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes

Stronati L et al. · 2006

Italian and British researchers exposed human immune cells (lymphocytes) to 935 MHz cell phone radiation for 24 hours at levels similar to what tissues experience during phone use. Using multiple DNA damage tests, they found no genetic damage from the radiation alone, and the radiation didn't make X-ray damage worse. This suggests that 24-hour exposure to this type of cell phone radiation doesn't directly break DNA or interfere with DNA repair.

Immune SystemNo Effects Found

Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells.

Simko M et al. · 2006

German researchers exposed human immune cells (monocytes) to radiofrequency radiation at 2 W/kg SAR - similar to cell phone levels - while also testing exposure to ultrafine air pollution particles. They measured two key stress indicators: free radical production and heat shock proteins. While the air pollution particles triggered significant stress responses, the RF radiation produced no measurable effects on either stress marker, even when combined with the particles.

DNA & Genetic DamageNo Effects Found

Exposure to radiofrequency radiation (900 MHz, GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: an interlaboratory study.

Scarfi MR et al. · 2006

Researchers exposed human blood cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) for 24 hours at various power levels to see if it caused DNA damage or affected cell growth. The study found no evidence of genetic damage or harmful effects on the cells, even at exposure levels up to 10 watts per kilogram. Two independent laboratories confirmed these results using cells from 10 different healthy volunteers.

Immune SystemNo Effects Found

Nuclear translocation and DNA-binding activity of NFKB (NF-kappaB) after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate kappaB-dependent gene expression.

Natarajan M et al. · 2006

Researchers exposed human immune cells to extremely powerful pulsed electromagnetic fields (1,000 times stronger than typical EMF exposures) for 90 minutes and found that while the fields initially activated a key cellular stress response called NF-kappaB, this activation was functionally meaningless - it didn't actually trigger the downstream immune responses that normally follow. The study suggests that even very high EMF exposures may not necessarily translate into biological consequences.

Immune SystemNo Effects Found

Effects of GSM-modulated radiofrequency electromagnetic fields on B-cell peripheral differentiation and antibody production.

Nasta F et al. · 2006

Researchers exposed mice to cell phone radiation (900 MHz GSM signals) for 2 hours daily over 4 weeks to test whether it affects immune system function, specifically B-cells that produce antibodies to fight infections. They found no changes in B-cell development, antibody production, or immune responses compared to unexposed mice. This suggests that this level of cell phone radiation exposure doesn't impair the immune system's ability to protect against disease.

Cellular EffectsNo Effects Found

Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes.

Lee JS, Huang TQ, Kim TH, Kim JY, Kim HJ, Pack JK, Seo JS. · 2006

Researchers exposed human immune cells and rat brain cells to cell phone-level radiofrequency radiation (1763 MHz) at power levels of 2 and 20 W/kg for up to one hour while carefully controlling temperature. They found no activation of cellular stress responses, including heat shock proteins and stress-signaling pathways that typically activate when cells are damaged. This suggests that RF radiation at these levels does not trigger the cellular alarm systems that respond to harmful stressors.

Cellular EffectsNo Effects Found

Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human mono mac 6 cells to radiofrequency radiation.

Lantow M, Viergutz T, Weiss DG, Simko M. · 2006

German researchers exposed human immune cells (Mono Mac 6 cells) to cell phone radiation at 1,800 MHz for 12 hours to see if it would cause cell death or disrupt normal cell division cycles. They found no statistically significant effects on cell death, cell division, or DNA synthesis compared to unexposed control cells. This suggests that at the tested exposure level, cell phone-type radiation did not harm these particular immune cells in laboratory conditions.

Oxidative StressNo Effects Found

Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz Radiofrequency Radiation.

Lantow M, Schuderer J, Hartwig C, Simko M. · 2006

Researchers exposed human immune cells to cell phone radiation at 1800 MHz (the frequency used by GSM networks) to see if it would trigger the production of harmful free radicals or stress proteins. Even at high exposure levels up to 2.0 W/kg, the radiation did not cause any significant increase in free radical production or stress protein expression in the cells. This suggests that cell phone radiation at these levels may not trigger the type of cellular damage that free radicals can cause.

DNA & Genetic DamageNo Effects Found

Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.

Chauhan V et al. · 2006

Researchers exposed human immune cells to 1.9 GHz radiofrequency radiation (similar to cell phone signals) at power levels of 1 and 10 watts per kilogram for 6 hours to see if it would trigger stress responses or activate genes linked to cancer development. They found no changes in stress proteins or cancer-related genes at either power level, while heat treatment (as a positive control) did trigger the expected cellular stress responses.

Cellular EffectsNo Effects Found

Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.

Chauhan V et al. · 2006

Researchers exposed human immune cells to 1.9 GHz radiofrequency radiation at levels similar to cell phone use (1-10 W/kg SAR) to see if it triggered cellular stress responses. They measured key stress markers including heat shock proteins and proto-oncogenes that typically activate when cells are damaged. The study found no significant changes in these stress indicators, suggesting the RF exposure did not cause detectable cellular stress under these laboratory conditions.

Oxidative StressNo Effects Found

Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells.

Simkó M et al. · 2006

Researchers exposed human immune cells to radiofrequency radiation at cell phone levels (2 W/kg SAR) and ultrafine air pollution particles to see if they would trigger cellular stress responses. They found that while the particles caused significant oxidative stress and free radical production, the RF radiation alone showed no measurable effects on stress proteins or free radical levels, even when combined with the particles.

Oxidative StressNo Effects Found107 citations

ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes.

Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. · 2006

Researchers exposed human immune cells (monocytes and lymphocytes) to cell phone radiation at 1,800 MHz for 30-45 minutes to see if it would trigger oxidative stress or cellular stress responses. They found no meaningful biological effects from the RF exposure, with any statistical differences appearing to be due to measurement variations rather than actual cellular damage.

Oxidative StressNo Effects Found

Free Radical Release and HSP70 Expression in Two Human Immune-Relevant Cell Lines after Exposure to 1800 MHz Radiofrequency Radiation.

Lantow M, Schuderer J, Hartwig C, Simko M. · 2006

Researchers exposed human immune cells to 1800 MHz radiofrequency radiation (the same frequency used by GSM cell phones) at various power levels to see if it would trigger free radical production or stress protein responses. They found no significant effects on either measure, even at exposure levels up to 2.0 W/kg. This suggests that RF radiation at these levels doesn't cause oxidative stress in these particular immune cell types.

Cellular telephones and non-Hodgkin lymphoma.

Linet MS et al. · 2006

Researchers studied whether cellular phone use increases the risk of non-Hodgkin lymphoma (a type of blood cancer) by comparing 551 cancer patients to 462 healthy controls. They found no increased cancer risk even among regular phone users, though very few participants had used phones for more than 6 years or 200 total hours. The findings are limited because cell phone use was still relatively new when the study was conducted in the early 2000s.

Evaluation of health risks caused by radio frequency accelerated carcinogenesis: the importance of processes driven by the calcium ion signal.

Anghileri LJ, Mayayo E, Domingo JL, Thouvenot P. · 2006

Researchers exposed mice to radio frequency radiation from cellular phones and found it accelerated cancer development in ways similar to known cancer-promoting chemicals. The study showed that RF exposure triggered calcium ion signals that activated cancer-causing genes while weakening immune defenses. This suggests cell phone radiation may speed up cancer progression through the same biological pathways used by established carcinogens.

Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro.

Stankiewicz W et al. · 2006

Polish researchers exposed human immune cells to 900 MHz GSM cell phone signals at very low power levels (SAR 0.024 W/kg) and found that the microwave exposure significantly increased immune cell activity. The exposed cells showed stronger responses to immune stimulants and higher activity levels compared to unexposed control cells. This suggests that even low-level cell phone radiation can alter how your immune system functions at the cellular level.

Immunotropic influence of 900 MHz microwave GSM signal on human blood immune cells activated in vitro.

Stankiewicz W et al. · 2006

Researchers exposed human immune cells to 900 MHz microwave radiation (similar to GSM cell phone signals) at very low power levels and found that the radiation significantly increased immune cell activity. The exposed cells showed stronger responses to immune stimulants compared to unexposed control cells. This suggests that even weak microwave radiation can alter how our immune system functions.

Modulation of MCP-1 and iNOS by 50-Hz sinusoidal electromagnetic field

Reale M et al. · 2006

Researchers exposed human immune cells called monocytes to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla overnight. They found the fields altered production of two important immune signaling molecules: reducing nitric oxide synthase (which helps fight infections) while increasing MCP-1 (which attracts immune cells to sites of inflammation). These changes suggest power-frequency magnetic fields can disrupt normal immune system function.

Immune System108 citations

Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields.

Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M · 2006

Scientists exposed mouse immune cells to 50 Hz magnetic fields from power lines and found the cells became hyperactive. The fields increased the cells' ability to consume particles by 60% and boosted inflammatory chemicals 12-fold, suggesting everyday electrical frequencies can overstimulate immune responses.

Immune SystemNo Effects Found

Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes.

Lim HB, Cook GG, Barker AT, Coulton LA. · 2005

Researchers exposed human white blood cells to 900 MHz cell phone radiation at various power levels for up to 4 hours to see if it triggered a cellular stress response. The cells showed no signs of producing stress proteins (the body's natural defense against harmful conditions) after RF exposure, even though they did respond normally when heated to 42°C. This suggests that cell phone-type radiation at these levels doesn't cause detectable cellular stress in immune cells.

DNA & Genetic DamageNo Effects Found

Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields.

Zeni O et al. · 2005

Italian researchers exposed human white blood cells to 900 MHz cell phone radiation for 2 hours at levels similar to what phones emit during calls. They tested multiple ways to detect DNA damage but found no statistically significant genetic harm at either exposure level tested. The study suggests that short-term exposure to cell phone radiation at typical use levels may not cause immediate DNA damage in blood cells.

Microwaves from GSM Mobile Telephones Affect 53BP1 and gamma-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons.

Markova E, Hillert L, Malmgren L, Persson BR, Belyaev IY · 2005

Researchers exposed human immune cells (lymphocytes) to microwave radiation from GSM mobile phones and found that the radiation caused DNA damage markers similar to heat shock stress. The study compared cells from both healthy people and those who report electromagnetic sensitivity, finding similar responses in both groups. This suggests that mobile phone radiation can trigger cellular stress responses that indicate potential DNA damage, regardless of whether someone feels sensitive to electromagnetic fields.

Use of cellular or cordless telephones and the risk for non-Hodgkin's lymphoma.

Hardell L, Eriksson M, Carlberg M, Sundstrom C, Mild KH. · 2005

Swedish researchers studied whether using cell phones and cordless phones increases the risk of non-Hodgkin's lymphoma, a type of blood cancer. They found no increased risk for the most common type (B-cell lymphoma), but did find a potential link between phone use and a rarer form called T-cell lymphoma, particularly after five years of use. The increased risk was most pronounced for certain aggressive forms of T-cell lymphoma, with cordless phones showing the strongest association.

Browse by Health Effect